
SCOPF Problem Formulation: Challenge 1

Grid Optimization Competition

August 28, 2018

1 Background

This document contains the official formulation that will be used for evaluation in Challenge
1 of the Grid Optimization (GO) Competition. Minor changes may occur within the formu-
lation. Entrants will be notified when a new version is released. Changes are not expected
to be of any significance, to cause a change in approach for the Entrants.

This formulation builds upon the formulation published in ARPA-E DE-FOA-0001952. En-
trants will be judged based on the current official formulation posted on the
GO Competition website (this document, which is subject to change), not the
formulation posted in DE-FOA-0001952. Entrants are permitted and encouraged to
use any alternative problem formulation and modeling convention within their own software
(such as convex relaxation, decoupled power flow formulations, current-voltage formulations,
etc.) in an attempt to produce an exact or approximate solution to this particular math-
ematical program. However, the judging of all submitted approaches must conform to the
official formulation presented here.

The following mathematical programming problem is a type of a security-constrained (AC
based) optimal power flow, or SCOPF. There are many ways to formulate the SCOPF prob-
lem; this document presents multiple equivalent options for specified constraints. Entrants
are strongly encouraged to study this formulation precisely and to engage with the broader
community if anything is not clear (please see the FAQs and forum on the GO Competition
website, https://gocompetition.energy.gov/).

This SCOPF problem is defined to be an alternating current (AC) formulation, which is
based on a bus-branch power system network model and considers security constraints. In
general, Entrants are tasked with determining the optimal dispatch and control settings for
power generation and grid control equipment in order to minimize the cost of operation, sub-
ject to pre- and post-contingency constraints. Feasible solutions must conform to operating
standards including, but not limited to: minimum and maximum bus voltage magnitude
limits, minimum and maximum real and reactive power generation from each generator,
thermal transmission constraints, proxy stability constraints, and constraints to ensure the
reliability of the system while responding to unexpected events (i.e., a contingency). Feasi-
ble solutions must also include contingency modeling to describe the response of generators
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and transmission elements to changes from the pre-contingency base case. This formula-
tion allows for real and reactive power nodal violations as well as branch (transmission line
and transformer) overloading; however, violations will be penalized in the objective function.

Features that are not modeled within this SCOPF include transformer tap settings, phase
angle regulators, various flexible AC transmission system (FACTS) devices, or switchable
shunts. Please note that shunts are included but we are not precisely modeling the binary
nature of switchable shunts; rather, these are modeled using continuous variables.

Challenge 1 will include power system network models that vary in size of the network flow
problem (number of nodes and branches) as well as the number of contingencies. The largest
models will reach to at least the size of the largest regional transmission organization within
the United States. The problem presented here is a single period problem. The modeling of
the pre-contingency base case is a reflection of the first stage of a two-stage mathematical
program whereas the post-contingency state represents the second stage. Unit commitment
(the commitment/decommitment of generators) is not included in the formulation and fast-
start generators are not acknowledged as an available post-contingency response; only units
that are online initially may respond. Post-contingency generator response (i.e., activation
of contingency reserve) is dictated by an offline policy: generators must follow their pre-
defined particpation factor unless they reach an operational limit. As such, this problem
does not fully optimize the second-stage recourse decision variables but rather forces them
to follow this offline policy. Challenge 2 will likely expand upon Challenge 1 by considering
more advanced modeling of power flow equipment (transformers, phase shifters, FACTS),
the grid itself (e.g., bus-breaker models), and a more detailed representation of the flexibility
available to respond during a contingency (e.g., generator response and modeling of recourse
decision variables and limits).

2 Symbol reference

Units, notation, and the general nomenclature are given Tables (1, 2, 3, 4, 5, 6, 7, 8). These
tables list sets, indices, subsets and special set elements, data parameters, and variables. As
much as possible, the notation follows the following convention. (1) A symbol consists of a
main letter with attached notation such as subscripts, superscripts, oversets, and undersets.
(2) Two symbols with the same main letter but different attached notation are different sym-
bols. (3) The main letters of symbols generally follow conventions common in the optimal
power flow literature and the optimization literature, though other letters are used where
there is no established convention.

Units of measurement are listed in Table (1). Attached notation convention is given in
Table (2). Main letter convention is given in Table (3). Sets are given in Table (4). In-
dices are given in Table (5). Subsets and distinguished set elements are given in Table (6).
Parameters are given in Table (7) and variables are given in Table (8).
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Table 1: Units of measurement

Unit Description

1 dimensionless. Dimensionless real number quantities are
indicated by a unit of 1.

bin binary. Binary quantities, i.e. taking values in {0, 1}, are
indicated by a unit of bin.

deg degree. In the physical unit convention, angles are expressed
in deg.

USD US dollar. Cost, penalty, and objective values are expressed in
USD.

kV kilovolt. In the physical unit convention, voltage magnitude is
expressed in kV.

MVAR megavolt-ampere-reactive. In the physical unit convention,
reactive power is expressed in MVAR.

MVAR at 1 p.u. voltage megavolt-ampere-reactive at unit voltage. In the physical unit
convention, susceptance is expressed in MVAR at 1 p.u.
voltage, meaning the susceptance is such as to yield a reactive
power flow equal to the indicated amount when the voltage is
equal to 1 p.u.

MW megawatt. In the physical unit convention, real power is
expressed in MW.

MW at 1 p.u. voltage megawatt at unit voltage. In the physical unit convention,
conductance is expressed in MW at 1 p.u. voltage, meaning
the conductance is such as to yield a real power flow equal to
the indicated amount when the voltage is equal to 1 p.u.

p.u. per unit. Real and reactive power, voltage magnitude,
conductance, susceptance can be expressed in a per unit
system under given base values, and the unit is denoted by
p.u.

rad radian. In the per unit convention, angles are expressed in
rad.

Table 2: Attached notation

example description

w� subscript is used for an index in a set.

w� superscript is used for description of a symbol.

3



Table 2: Continued

example description

w overline is used for an upper bound.

w underline is used for a lower bound.

w̃ overset ∼ indicates a unit base value.

w0 superscript 0 indicates a value in a given operating point.

wo superscript o indicates the origin (from, sending) bus of a branch.

wd superscript d indicates the destination (to, receiving) bus of a branch.

w+ superscript + indicates an upper bound violation, the positive part of an
equality constraint violation, or an upper bound slack.

w− superscript − indicates a lower bound violation, or a lower bound slack.

ŵ overset ˆ indicates a value reported in a solution file, possibly in different units
from the corresponding value in the model.

W primitive index sets are denoted by a caligraphic capital letter.

W ⊂ W subsets are denoted by the same letter as the corresponding primitive index
set, in italic.

w ∈ W set elements are denoted by the same letter as the corresponding primitive
index set, in lower case italic.

w′ set elements are primed to denote different elements of the same set.

Table 3: Main letter convention

main letter description

a area

b susceptance

c cost, penalty, objective

e transmission line (arc in a transmission network)

f transformer (arc in a transmission network)

g conductance (also generator: when g appears with a subscript, it is a
conductance value)

g generator (also conductance: when g appears as an element of a set, it is a
generator)

h point on a cost function

i bus (node in a transmission network)

k contingency

4



Table 3: Continued

main letter description

n segment number for the piecewise linear penalty cost function for violations
(constraint relaxations)

p real power

q reactive power

R apparent current rating (current magnitude)

s apparent power (power magnitude)

t interpolation coeficient

v voltage magnitude

x binary variables

α participation factor

∆ post-contingency (adjusted) real power response for generators following

θ bus voltage angle or transformer shift angle

λ constraint violation penalty coefficient

σ violation or slack variable relative to a constraint

τ tap ratio

Table 4: Primitive index sets

Symbol Description

A set of areas

E set of lines (nontransformer branches)

F set of transformers (2-winding only)

G set of generators

H set of cost function sample points

I set of buses

K set of contingencies

N set of segments in the piecewise linear penalty cost function for violations
(constraint relaxations)
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Table 5: Indices

Symbol Description

a, a′ ∈ A area indices

e, e′ ∈ E line indices

f, f ′ ∈ F transformer indices

g, g′ ∈ G generator indices

h, h′ ∈ H cost function sample point indices

i, i′ ∈ I bus indices

k, k′ ∈ K contingency indices

n, n′ ∈ N segment indices for the piecewise linear penalty cost function for violations
(constraint relaxations)

Table 6: Subsets and distinguished set elements

Symbol Description

ai ∈ A area of bus i

Ak ⊂ A contingent areas in contingency k, i.e., areas containing a bus with a connected
generator, line, or transformer that goes out of service in contingency k

E ⊂ E lines active in the base case

Ed
i ⊂ E lines with destination bus i, Ed

i = {e ∈ E : ide = i}
Eo
i ⊂ E lines with origin bus i, Eo

i = {e ∈ E : ioe = i}
Ek ⊂ E lines active in contingency k

Ed
ik ⊂ E lines active in contingency k with destination bus i

Eo
ik ⊂ E lines active in contingency k with origin bus i, Eo

ik = Eo
i ∩ Ek

F ⊂ F transformers active in the base case

F d
i ⊂ F transformers with destination bus i, F d

i = {f ∈ F : idf = i}
F o
i ⊂ F transformers with origin bus i, F o

i = {f ∈ F : iof = i}
Fk ⊂ F transformers active in contingency k

F d
ik ⊂ F transformers active in contingency k with destination bus i, F d

ik = F d
i ∩ Fk

F o
ik ⊂ F transformers active in contingency k with origin bus i, F o

ik = F o
i ∩ Fk

G ⊂ G generators active in the base case

Gi ⊂ G generators connected to bus i, Gi = {g ∈ G : ig = i}
Gk ⊂ G generators active in contingency k

GP
k ⊂ G generators participating in real power response in contingency k
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Table 6: Continued

Symbol Description

Gik ⊂ G generators active in contingency k and connected to bus i, Gik = Gi ∩Gk

Hg ⊂ H cost function sample points for generator g

Ia ⊂ I buses in area a, Ia = {i ∈ I : ai = a}
ide ∈ I destination bus of line e

ioe ∈ I origin bus of line e

idf ∈ I destination bus of transformer f

iof ∈ I origin bus of transformer f

ig ∈ I bus that generator g is connected to

Table 7: Data parameters

Symbol Description

be line e series susceptance (p.u.)

bCHe line e total charging susceptance (p.u.)

bf transformer f series susceptance (p.u.)

bMf transformer f magnetizing susceptance (p.u.)

b
CS

i bus i maximum controllable shunt susceptance (p.u.)

bCSi bus i minimum controllable shunt susceptance (p.u.)

bFSi bus i fixed shunt susceptance (p.u.)

cslack the objective value of a certain easily constructed feasible solution (USD)

cgh generation cost of generator g at sample point h (USD)

ge line e series conductance (p.u.)

gf transformer f series conductance (p.u.)

gMf transformer f magnetizing conductance (p.u.)

gFSi bus i fixed shunt conductance (p.u.)

M a large constant used in the big-M mixed integer programming formulation of
generator real power contingency response (p.u.)

M a constant such that for any M ≥M the mixed integer programming
formulation of generator real power response is valid. (p.u.)

MP a large constant used in the big-M mixed integer programming formulation of
generator real power contingency response (p.u.)
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Table 7: Continued

Symbol Description

MP a constant such that for any MP ≥MP the mixed integer programming
formulation of generator real power response is valid. (p.u.)

MQ a large constant used in the big-M mixed integer programming formulation of
generator reactive power contingency response (p.u.)

MQ a constant such that for any MQ ≥MQ the mixed integer programming
formulation of generator reactive power response is valid. (p.u.)

M v a large constant used in the big-M mixed integer programming formulation of
generator reactive power contingency response (p.u.)

M v a constant such that for any M v ≥M v the mixed integer programming
formulation of generator reactive power response is valid. (p.u.)

pg generator g real power maximum (p.u.)

p
g

generator g real power minimum (p.u.)

pgh real power output of generator g at sample point h (p.u.)

pLi bus i constant real power load (p.u.)

qg generator g reactive power maximum (p.u.)

q
g

generator g reactive power minimum (p.u.)

qLi bus i constant reactive power load (p.u.)

Re line e apparent current maximum in base case (p.u.)

R
K

e line e apparent current maximum in contingencies

s̃ system power base (MVA)

sf transformer f apparent power maximum in base case (p.u.)

sKf transformer f apparent power maximum in contingencies (p.u.)

ṽi bus i voltage base (kV)

vi bus i voltage magnitude maximum in the base case (p.u.)

vi bus i voltage magnitude minimum in the base case (p.u.)

vKi bus i voltage magnitude maximum in contingencies (p.u.)

vKi bus i voltage magnitude minimum in contingencies (p.u.)

αg participation factor of generator g in real power contingency response (1)

δ weight on base case in objective (1)

θf transformer f phase angle (rad)

λPn objective coefficient on real power power constraint violations for segment n in
the piecewise linear penalty cost function (USD/p.u.)
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Table 7: Continued

Symbol Description

λQn objective coefficient on real power power constraint violations for segment n in
the piecewise linear penalty cost function (USD/p.u.)

λSn objective coefficient on apparent power constraint violations for segment n in
the piecewise linear penalty cost function (USD/p.u.)

σSen segment n upper bound corresponding to the piecewise linear penalty cost
function for line e apparent current rating violation (p.u.)

σSfn segment n upper bound corresponding to the piecewise linear penalty cost
function for transformer f apparent power rating violation (p.u.)

σSekn segment n upper bound corresponding to the piecewise linear penalty cost
function for line e contingency k apparent current rating violation (p.u.)

σSfkn segment n upper bound corresponding to the piecewise linear penalty cost
function for transformer f contingency k apparent power rating violation (p.u.)

σP+
in segment n upper bound corresponding to the piecewise linear penalty cost

function for bus i real power balance violation positive part, i.e., excess real
power flowing into bus i (p.u.)

σP−in segment n upper bound corresponding to the piecewise linear penalty cost
function for bus i real power balance violation negative part, i.e., excess real
power flowing out of bus i (p.u.)

σQ+
in segment n upper bound corresponding to the piecewise linear penalty cost

function for bus i reactive power balance violation positive part (p.u.)

σQ−in segment n upper bound corresponding to the piecewise linear penalty cost
function for bus i reactive power balance violation negative part (p.u.)

σP+
ikn segment n upper bound corresponding to the piecewise linear penalty cost

function for bus i contingency k real power balance violation positive part
(p.u.)

σP−ikn segment n upper bound corresponding to the piecewise linear penalty cost
function for bus i contingency k real power balance violation negative part
(p.u.)

σQ+
ikn segment n upper bound corresponding to the piecewise linear penalty cost

function for bus i contingency k reactive power balance violation positive part
(p.u.)

σQ−ikn segment n upper bound corresponding to the piecewise linear penalty cost
function for bus i contingency k reactive power balance violation negative part
(p.u.)

τf transformer f tap ratio (1)
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Table 8: Optimization variables

Symbol Description

bCSi bus i controllable shunt susceptance (p.u.)

bCSik bus i contingency k controllable shunt susceptance (p.u.)

c total objective (USD)

cg generation cost of generator g (USD)

cσ total constraint violation penalty in base case (USD)

cσk total constraint violation penalty in contingency k (USD)

pde line e real power from destination bus into line (p.u.)

poe line e real power from origin bus into line (p.u.)

pdek line e contingency k real power from destination bus into line (p.u.)

poek line e contingency k real power from origin bus into line (p.u.)

pdf transformer f real power from destination bus into transformer (p.u.)

pof transformer f real power from origin bus into transformer (p.u.)

pdfk transformer f contingency k real power from destination bus into transformer
(p.u.)

pofk transformer f contingency k real power from origin bus into transformer (p.u.)

pg generator g real power output (p.u.)

pgk generator g contingency k real power output (p.u.)

qde line e reactive power from destination bus into line (p.u.)

qoe line e reactive power from origin bus into line (p.u.)

qdek line e contingency k reactive power from destination bus into line (p.u.)

qoek line e contingency k reactive power from origin bus into line (p.u.)

qdf transformer f reactive power from destination bus into transformer (p.u.)

qof transformer f reactive power from origin bus into transformer (p.u.)

qdfk transformer f contingency k reactive power from destination bus into
transformer (p.u.)

qofk transformer f contingency k reactive power from origin bus into transformer
(p.u.)

qg generator g reactive power output (p.u.)

qgk generator g contingency k reactive power output (p.u.)

tgh coefficient of sample point h for generator g solution as a point on generation
cost function (1)
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Table 8: Continued

Symbol Description

vi bus i voltage magnitude (p.u.)

vik bus i contingency k voltage magnitude (p.u.)

xP+
gk generator g contingency k binary variable indicating positive slack in upper

bound on real power output (bin)

xP−gk generator g contingency k binary variable indicating positive slack in lower
bound on real power output (bin)

xQ+
gk generator g contingency k binary variable indicating positive slack in upper

bound on reactive power output (bin)

xQ−gk generator g contingency k binary variable indicating positive slack in lower
bound on reactive power output (bin)

∆k contingency k scale factor on generator participation factors definining
generator real power contingency response (p.u.)

θi bus i voltage angle (rad)

θik bus i contingency k voltage angle (rad)

σSen line e apparent current rating violation for segment n in the piecewise linear
penalty cost function (p.u.)

σSekn line e contingency k apparent current rating violation for segment n in the
piecewise linear penalty cost function (p.u.)

σSfkn transformer f contingency k apparent power rating violation for segment n in
the piecewise linear penalty cost function (p.u.)

σP+
in bus i real power balance violation positive part, i.e., excess real power flowing

into bus i, for segment n in the piecewise linear penalty cost function (p.u.)

σP−in bus i real power balance violation negative part, i.e., excess real power flowing
out of bus i, for segment n in the piecewise linear penalty cost function (p.u.)

σQ+
in bus i reactive power balance violation positive part for segment n in the

piecewise linear penalty cost function (p.u.)

σQ−in bus i reactive power balance violation negative part for segment n in the
piecewise linear penalty cost function (p.u.)

σP+
ikn bus i contingency k real power balance violation positive part for segment n in

the piecewise linear penalty cost function (p.u.)

σP−ikn bus i contingency k real power balance violation negative part for segment n in
the piecewise linear penalty cost function (p.u.)

σQ+
ikn bus i contingency k reactive power balance violation positive part for segment

n in the piecewise linear penalty cost function (p.u.)
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Table 8: Continued

Symbol Description

σQ−ikn bus i contingency k reactive power balance violation negative part for segment
n in the piecewise linear penalty cost function (p.u.)

3 Model formulation

3.1 Objective definition

The objective (for minimization) is the sum of generator real power output costs in the
base case, and a weighted sum of soft constraint violation penalties in the base case and
contingencies:

c =
∑
g∈G

cg + δcσ + (1− δ)/|K|
∑
k∈K

cσk (1)

Generator real power output cost is defined by a cost function given as a set of sample points,
modeled by interpolating the cost to the sample points in the cost space and the real power
output to the sample points in the real power output space, with common interpolation
coefficients. Generator cost interpolation to sample points:

cg =
∑
h∈Hg

cghtgh ∀g ∈ G (2)

Generator real power output interpolation to sample points:∑
h∈Hg

pghtgh = pg ∀g ∈ G (3)

Generator cost interpolation coefficient bounds:

0 ≤ tgh ∀g ∈ G, h ∈ Hg (4)

Generator cost interpolation coefficient normalization:∑
h∈Hg

tgh = 1 ∀g ∈ G (5)

The total constraint violation penalty in the base case and in contingencies includes penalties
on violations of bus real and reactive power balance, penalties on violations of line apparent
current ratings, and penalties on violations of transformer apparent power ratings. The
penalty is given by a piecewise linear cost function for the violation cost terms - where a
small penalty price is applied to minor violations followed by a more stringent penalty price
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for moderate violations and then an extremely severe penalty for all remaining violations
(i.e., it is likely to have 3 segments, indexed by n in this formulation). The first two segments
will follow existing industry practices related to constraint relaxations and the chosen penalty
prices. The last price will be substantially higher to encourage the approach to not have
significant violations. The penalties in the base case and contingencyies are given by:

cσ =
∑
n∈N

[
λPn

∑
i∈I

(σP+
in + σP−in ) + λQn

∑
i∈I

(σQ+
in + σQ−in ) +λSn

∑
e∈E

σSen + λSn
∑
f∈F

σSfn

]
(6)

cσk =
∑
n∈N

[
λPn

∑
k∈K,i∈I

(σP+
ikn + σP−ikn ) + λQn

∑
k∈K,i∈I

(σQ+
ikn + σQ−ikn )

+ λSn
∑

k∈K,e∈Ek

σSekn + λSn
∑

k∈K,f∈Fk

σSfkn

]
∀k ∈ K

(7)

Violations in each segment of the piecewise linear cost function are represented by overall
violation variables (i.e., not indexed by n) for the remaining constraints in this formulation:

σP+
i =

∑
n∈N

σP+
in ∀i ∈ I (8)

σP+
ik =

∑
n∈N

σP+
ikn ∀i ∈ I, k ∈ K (9)

σP−i =
∑
n∈N

σP−in ∀i ∈ I (10)

σP−ik =
∑
n∈N

σP−ikn ∀i ∈ I, k ∈ K (11)

σQ+
i =

∑
n∈N

σQ+
in ∀i ∈ I (12)

σQ+
ik =

∑
n∈N

σQ+
ikn ∀i ∈ I, k ∈ K (13)

σQ−i =
∑
n∈N

σQ−in ∀i ∈ I (14)
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σQ−ik =
∑
n∈N

σQ−ikn ∀i ∈ I, k ∈ K (15)

σSe =
∑
n∈N

σSen ∀e ∈ E (16)

σSek =
∑
n∈N

σSenk ∀e ∈ E, k ∈ K (17)

σSf =
∑
n∈N

σSfn ∀f ∈ F (18)

σSfk =
∑
n∈N

σSfnk ∀f ∈ F, k ∈ K (19)

Bounds on violation variables for each segment are established based on the following equa-
tions. Each segment slack variable is non-negative with a lower bound of zero and an upper
bound that varies based on the n segment. While the presented formulation here is generic,
the GO Competition Challenge 1 will likely set the upper bounds for each segment to be a
percentage of the corresponding transmission transfer limit (line current limit or transformer
power limit) or a fixed MW and MVAr value for the node balance violations.

0 ≤ σP+
in ≤ σP+

in ∀i ∈ I, n ∈ N (20)

0 ≤ σP+
ink ≤ σP+

in ∀i ∈ I, n ∈ N, k ∈ K (21)

0 ≤ σP−in ≤ σP−in ∀i ∈ I, n ∈ N (22)

0 ≤ σP−ink ≤ σP−in ∀i ∈ I, n ∈ N, k ∈ K (23)

0 ≤ σQ+
in ≤ σQ+

in ∀i ∈ I, n ∈ N (24)

0 ≤ σQ+
ink ≤ σQ+

in ∀i ∈ I, n ∈ N, k ∈ K (25)
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0 ≤ σQ−in ≤ σQ−in ∀i ∈ I, n ∈ N (26)

0 ≤ σQ−ink ≤ σQ−in ∀i ∈ I, n ∈ N, k ∈ K (27)

0 ≤ σS+en ≤ σS+en ∀e ∈ E, n ∈ N (28)

0 ≤ σS+enk ≤ σS+en ∀e ∈ E, n ∈ N, k ∈ K (29)

0 ≤ σS+fn ≤ σS+fn ∀f ∈ F, n ∈ N (30)

0 ≤ σS+fnk ≤ σS+fn ∀f ∈ F, n ∈ N, k ∈ K (31)

3.2 Primary optimization variable bounds in the base case

Bounds on voltage in the base case are given by:

vi ≤ vi ≤ vi ∀i ∈ I (32)

Bounds on real power in the base case are given by:

p
g
≤ pg ≤ pg ∀g ∈ G (33)

No real power is produced by generators that are not active in the base case:

pg = 0 ∀g ∈ G \G (34)

Bounds on reactive power in the base case are given by:

q
g
≤ qg ≤ qg ∀g ∈ G (35)

No reactive power is produced by generators that are not active in the base case:

qg = 0 ∀g ∈ G \G (36)

Bounds on shunt susceptance in the base case are given by:

bCSi ≤ bCSi ≤ b
CS

i ∀i ∈ I (37)
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3.3 Line flow definitions in the base case

Real and reactive power flows into a line at the origin buses in the base case are defined by:

poe = gev
2
ioe

+ (−ge cos(θioe − θide)− be sin(θioe − θide))vioevide ∀e ∈ E
(38)

qoe = −(be + bCHe /2)v2ioe
+ (be cos(θioe − θide)− ge sin(θioe − θide))vioevide ∀e ∈ E

(39)

Real and reactive power flows into a line at the destination buses in the base case are defined
by:

pde = gev
2
ide

+ (−ge cos(θide − θioe)− be sin(θide − θioe))vioevide ∀e ∈ E
(40)

qde = −(be + bCHe /2)v2ide
+ (be cos(θide − θioe)− ge sin(θide − θioe))vioevide ∀e ∈ E

(41)

3.4 Transformer flow definitions in the base case

Real and reactive power flows into a transformer at the origin buses in the base case are
defined by:

pof = (gf/τ
2
f + gMf )v2iof

+ (−gf/τf cos(θiof − θidf − θf )− bf/τf sin(θiof − θidf − θf ))viofvidf ∀f ∈ F
(42)

qof = −(bf/τ
2
f + bMf )v2iof

+ (bf/τf cos(θiof − θidf − θf )− gf/τf sin(θiof − θidf − θf ))viofvidf ∀f ∈ F
(43)

Real and reactive power flows into a transformer at the destination buses in the base case
are defined by:

pdf = gfv
2
idf

+ (−gf/τf cos(θidf − θiof + θf )− bf/τf sin(θidf − θiof + θf ))viofvidf ∀f ∈ F
(44)

qdf = −bfv2idf
+ (bf/τf cos(θidf − θiof + θf )− gf/τf sin(θidf − θiof + θf ))viofvidf ∀f ∈ F

(45)
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3.5 Bus power balance constraints in the base case

Bus real power balance constraints ensure that all real power output from generators at a
given bus sum to all real power flows into other grid components at the bus. Nonegative
variables σP+

i and σP−i represent the positive and negative parts of the net imbalance. These
constraint violation variables (also called slack variables) appear in the objective with penalty
coefficients.∑

g∈Gi

pg − pLi − gFSi v2i

−
∑
e∈Eo

i

poe −
∑
e∈Ed

i

pde −
∑
f∈F o

i

pof −
∑
f∈F d

i

pdf = σP+
i − σP−i ∀i ∈ I

(46)

σP+
i ≥ 0 ∀i ∈ I (47)

σP−i ≥ 0 ∀i ∈ I (48)

Bus reactive power balance constraints are similar with soft constraint violation variables
σQ+
i and σQ−i :∑

g∈Gi

qg − qLi − (−bFSi − bCSi )v2i

−
∑
e∈Eo

i

qoe −
∑
e∈Ed

i

qde −
∑
f∈F o

i

qof −
∑
f∈F d

i

qdf = σQ+
i − σQ−i ∀i ∈ I

(49)

σQ+
i ≥ 0 ∀i ∈ I (50)

σQ−i ≥ 0 ∀i ∈ I (51)

3.6 Line current ratings in the base case

Line current ratings in the base case at the origin bus, with soft constraint violation variables
σSe , are given by:√

(poe)
2 + (qoe)

2 ≤ Revi0e + σSe ∀e ∈ E (52)

σSe ≥ 0 ∀e ∈ E (53)

Line current ratings in the base case at the destination bus, with soft constraint violation
variables σSe , are given by:√

(pde)
2 + (qde)

2 ≤ Revide + σSe ∀e ∈ E (54)
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3.7 Transformer power ratings in the base case

Transformer power ratings in the base case at the origin bus, with soft constraint violation
variables σSf , are given by:√

(pof )
2 + (qof )

2 ≤ sf + σSf ∀f ∈ F (55)

σSf ≥ 0 ∀f ∈ F (56)

Transformer power ratings in the base case at the destination bus, with soft constraint
violation variables σSf , are given by:√

(pdf )
2 + (qdf )

2 ≤ sf + σSf ∀f ∈ F (57)

3.8 Primary optimization variable bounds in contingencies

Bounds on voltage in each contingency are given by:

vKi ≤ vik ≤ vKi ∀k ∈ K, i ∈ I (58)

Bounds on real power generation in each contingency are given by:

p
g
≤ pgk ≤ pg ∀k ∈ K, g ∈ Gk (59)

No real power is produced by generators that are not active in each contingency:

pgk = 0 ∀k ∈ K, g ∈ G \Gk (60)

Bounds on reactive power generation in each contingency are given by:

q
g
≤ qgk ≤ qg ∀k ∈ K, g ∈ Gk (61)

No reactive power is produced by generators that are not active in each contingency:

qgk = 0 ∀k ∈ K, g ∈ G \Gk (62)

Bounds on shunt susceptance in each contingency are given by:

bCSi ≤ bCSik ≤ b
CS

i ∀k ∈ K, i ∈ I (63)

3.9 Line flow definitions in contingencies

Real and reactive power flows into a line at the origin bus each contingency are defined by:

poek = gev
2
ioek

+ (−ge cos(θioek − θidek)− be sin(θioek − θidek))vioekvidek ∀k ∈ K, e ∈ Ek
(64)
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qoek = −(be + bCHe /2)v2ioek

+ (be cos(θioek − θidek)− ge sin(θioek − θidek))vioekvidek ∀k ∈ K, e ∈ Ek
(65)

Real and reactive power flows into a line at the destination bus in each contingency are
defined by:

pdek = gev
2
idek

+ (−ge cos(θidek − θioek)− be sin(θidek − θioek))vioekvidek ∀k ∈ K, e ∈ Ek
(66)

qdek = −(be + bCHe /2)v2idek

+ (be cos(θidek − θioek)− ge sin(θidek − θioek))vioekvidek ∀k ∈ K, e ∈ Ek
(67)

3.10 Transformer flow definitions in contingencies

Real and reactive power flows into a transformer at the origin bus in each contingency are
defined by:

pofk = (gf/τ
2
f + gMf )v2iofk

+ (−gf/τf cos(θiofk − θidfk − θf )− bf/τf sin(θiofk − θidfk − θf ))viofkvidfk
∀k ∈ K, f ∈ Fk

(68)

qofk = −(bf/τ
2
f + bMf )v2iofk

+ (bf/τf cos(θiofk − θidfk − θf )− gf/τf sin(θiofk − θidfk − θf ))viofkvidfk
∀k ∈ K, f ∈ Fk

(69)

Real and reactive power flows into a transformer at the destination bus in each contingency
are defined by:

pdfk = gfv
2
idfk

+ (−gf/τf cos(θidfk − θiofk + θf )− bf/τf sin(θidfk − θiofk + θf ))viofkvidfk

∀k ∈ K, f ∈ Fk

(70)

qdfk = −bfv2idfk
+ (bf/τf cos(θidfk − θiofk + θf )− gf/τf sin(θidfk − θiofk + θf ))viofkvidfk

∀k ∈ K, f ∈ Fk

(71)
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3.11 Bus power balance constraints in contingencies

Bus real power balance constraints in each contingency with soft constraint violation vari-
ables σP+

ik and σP−ik are given by:∑
g∈Gik

pgk − pLi − gFSi v2ik

−
∑
e∈Eo

ik

poek −
∑
e∈Ed

ik

pdek −
∑
f∈F o

ik

pofk −
∑
f∈F d

ik

pdfk = σP+
ik − σ

P−
ik ∀k ∈ K, i ∈ I

(72)

σP+
ik ≥ 0 ∀k ∈ K, i ∈ I (73)

σP−ik ≥ 0 ∀k ∈ K, i ∈ I (74)

Bus reactive power balance constraints in each contingency with soft constraint violation
variables σQ+

ik and σQ−ik are given by:∑
g∈Gik

qgk − qLi − (−bFSi − bCSik )v2ik

−
∑
e∈Eo

ik

qoek −
∑
e∈Ed

ik

qdek −
∑
f∈F o

ik

qofk −
∑
f∈F d

ik

qdfk = σQ+
ik − σ

Q−
ik ∀k ∈ K, i ∈ I

(75)

σQ+
ik ≥ 0 ∀k ∈ K, i ∈ I (76)

σQ−ik ≥ 0 ∀k ∈ K, i ∈ I (77)

3.12 Line current ratings in contingencies

Line current ratings at the origin bus in each contingency with soft constraint violation
variables σSek are modeled by:√

(poek)
2 + (qoek)

2 ≤ R
K

e vioek + σSek ∀k ∈ K, e ∈ Ek (78)

σSek ≥ 0 ∀k ∈ K, e ∈ Ek (79)

Line current ratings at the destination bus in each contingency with soft constraint violation
variables σSek are modeled by:√

(pdek)
2 + (qdek)

2 ≤ R
K

e videk + σSek ∀k ∈ K, e ∈ Ek (80)
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3.13 Transformer power ratings in contingencies

Transformer power ratings in each contingency at the origin bus with soft constraint violation
variables σSf k, are given by:√

(pofk)
2 + (qofk)

2 ≤ sKf + σSfk ∀k ∈ K, f ∈ Fk (81)

σSfk ≥ 0 ∀k ∈ K, f ∈ Fk (82)

Transformer power ratings in each contingency at the destination bus with soft constraint
violation variables σSf k, are given by:√

(pdfk)
2 + (qdfk)

2 ≤ sKf + σSfk ∀k ∈ K, f ∈ Fk (83)

3.14 Generator real power contingency response

The real power output pgk of a generator g in a contingency k is subject to constraints linking
it to the base case value pg.

A generator that is online in a contingency but is not selected to respond to that contingency
maintains its real power output from the base case:

pgk = pg ∀k ∈ K, g ∈ Gk \GP
k (84)

A generator that does respond to a given contingency adjusts its real power output accord-
ing to its predefined (offline) participation factor until it hits an operational bound (min
or max capacity). The real power output of a responding generator g in contingency k is
pg + αg∆k, if the generator is following its required participation factor. The actual real
power output pgk must be equal to this value unless the generator were to violate its min
production or maximum capacity. The generator must operate at its lower bound when the
predefined participation factor response would force it to violate its min production level
and the generator must operate at its maximum capacity when the predefined participation
factor response would force it to violate its upper bound.

Given this conceptual definition of generator real power contingency response, we give several
mathematical formulations, including a formulation using logical constraints, a formulation
using the projection operator, and a big-M mixed integer programming formulation.

3.14.1 Logical formulation

In this section we formulate generator real power contingency response using a disjunction
of linear constraints. This formulation most clearly expresses the constraints that we want
to impose on the solution.

{p
g
≤ pgk ≤ pg and pgk = pg + αg∆k} or

{pgk = pg and pgk ≤ pg + αg∆k} or

{pgk = p
g

and pgk ≥ pg + αg∆k}

∀k ∈ K, g ∈ GP
k (85)
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3.14.2 Projection formulation

In this section we formulate generator real power contingency response using the projection
operator Π. This formulation is equivalent to the logic based presentation in the preceeding
section but it may not be easy to implement in standard optimization tools.

pgk = Π[p
g
,pg ](pg + αg∆k) ∀k ∈ K, g ∈ GP

k (86)

Equation (86) is an equivalent reformulation of (85).

3.14.3 Mixed integer programming formulation

In this section, we reformulate the generator real power contingency response using the big-
M mixed integer programming (MIP) technique. This approach requires the determination
of a large multiplier, the big-M value, and that value must be sufficiently large enough to
ensure that the MIP formulation is equivalent to the preceeding two formulations. Such an
MIP formulation is easier to implement within standard optimization modeling tools. First
let MP and M denote large positive constants, left unspecified here. Then introduce binary
variables xP+

gk and xP−gk :

xP+
gk ∈ {0, 1} ∀k ∈ K, g ∈ G

P
k (87)

xP−gk ∈ {0, 1} ∀k ∈ K, g ∈ G
P
k (88)

Then, equation (89) is written such that it is inactive if xP+
gk = 1. When xP+

gk = 0, equations
(59,89) force pgk = pg.

pg − pgk ≤MPxP+
gk ∀k ∈ K, g ∈ GP

k (89)

Equation (90) is written such that it is inactive if xP−gk = 1. When xP−gk = 0, equations (59,90)
force pgk = p

g
.

pgk − pg ≤MPxP−gk ∀k ∈ K, g ∈ GP
k (90)

Equation (91) is written such that it is inactive if xP+
gk = 0. When xP+

gk = 1, pgk is forced
to be equal to or greater than the desired real power response, pg + αg∆k, dictated by the
predefined participation factor, αg.

pg + αg∆k − pgk ≤M(1− xP+
gk ) ∀k ∈ K, g ∈ GP

k (91)

Equation (92) is written such that it is inactive if xP−gk = 0. When xP−gk = 1, pgk is forced to be
equal to or less than the desired real power response, pg + αg∆k, dictated by the predefined
participation factor, αg.

pgk − pg − αg∆k ≤M(1− xP−gk ) ∀k ∈ K, g ∈ GP
k (92)
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Since there exists MP and M such that for all MP ≥MP and M ≥M , equations (87, 88, 89,
90, 91, 92) create an equivalent reformulation of (85). Table (9) shows simplified equations
(89, 90, 91, 92) for all combinations of binary variables xP+

gk and xP−gk . The gray highlighted
cells are the inactive constraints under the specified solution for the binary vriables. The
first row, when xP+

gk = 1 and xP−gk = 1, represents the case when the generator precisely
follows the predefined participation factor response, which is the first state described by (85).
The second row, when xP+

gk = 0 and xP−gk = 1, represents the case when the participation
factor response would require the generator to violate its maximum capacity; therefore, the
generator operates instead at its max output. This is the second state defined by (85).
The third row, when xP+

gk = 1 and xP−gk = 0, represents the case when the participation
factor response would require the generator to violate its minimum capacity; therefore, the
generator operates instead at its min output. This is the third and final state defined by
(85). The last row represents an invalid (infeasible) solution for the binary variables; based
on the defined equations, it is not possible for both binary variables to take on a value of
zero. This infeasibility is directly imposed as can be seen by the resulting inequalities in
the last row that simultaneously force the generator’s real power production to be below its
min capacity and above its max capacity. Entrants may choose to add a combinatorial cut
that directly excludes this state, though such a constraint is not necessary to obtain a valid
solution.

xP+
gk xP−

gk (89) (90) (91) (92)

1 1 pgk ≥ −MP + pg pgk ≤MP + p
g

pgk ≥ pg + αg∆k pgk ≤ pg + αg∆k

0 1 pgk ≥ pg pgk ≤MP + p
g

pgk ≥ −M + pg + αg∆k pgk ≤ pg + αg∆k

1 0 pgk ≥ −MP + pg pgk ≤ pg pgk ≥ pg + αg∆k pgk ≤M + pg + αg∆k

0 0 pgk ≥ pg pgk ≤ pg pgk ≥ −M + pg + αg∆k pgk ≤M + pg + αg∆k

Table 9: Equations (89, 90, 91, 92) under all combinations of binary variables xP+
gk and xP−gk

values. All equations in Table (9) are written ∀k ∈ K, g ∈ GP
k . MP and M are sufficiently

large such that when they appear in the simplified equations (89, 90, 91, 92), the constraints
will not be binding in any feasible solution; these constraints have been shaded gray in Table
(9).

3.15 Generator reactive power contingency response

A generator g that is responsive during a contingency k tries to maintain the base case
(pre-contingency) voltage magnitude at its bus, ig, by adjusting its reactive power output.
The generator will do all that it can to maintain this voltage magnitude. If the bus voltage
magnitude drops below its base case magnitude, then the generator reactive power must be
at its upper bound, reflecting that it has exhausted its ability to increase voltage. Similarly
if the bus voltage magnitude is higher than the base case magnitude, then the generator
reactive power must be at its lower bound. In power systems, this is referred to as PV/PQ
switching; the generator’s bus is providing adequate voltage control then it is acting as a
PV bus as there is sufficient reactive power to maintain the voltage. If there is insufficient
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reactive power to maintain the voltage, the bus is deemed to be a PQ bus in this case and
the reactive power injection is fixed (in this special case, the reactive power is fixed to either
the generator’s reactive power lower or upper bound).

Given this conceptual definition of generator reactive power contingency response, we give
several mathematical formulations, including a formulation using logical constraints, a for-
mulation using min and max functions, and a big-M mixed integer programming formulation.

3.15.1 Formulation with logical constraints

In this section, we formulate generator reactive power contingency response using a disjunc-
tion of linear constraints.

{q
g
≤ qgk ≤ qg and vigk = vig} or

{qgk = qg and vigk ≤ vig} or

{qgk = q
g

and vigk ≥ vig}

 ∀k ∈ K, g ∈ Gk (93)

3.15.2 Formulation with min and max operators

In this section, we formulate generator reactive power contingency response using min and
max functions.

min{max{0, vig − vigk},max{0, qg − qgk}} = 0 ∀k ∈ K, g ∈ Gk (94)

min{max{0, vigk − vig},max{0, qgk − qg}} = 0 ∀k ∈ K, g ∈ Gk (95)

Equations (94, 95) are an equivalent reformulation of (93).

3.15.3 Formulation with binary variables

In this section, we formulate generator reactive power contingency response using the big-M
mixed integer programming technique. First let MQ and M v be large positive constants.
Then introduce binary variables xQ+

gk and xQ−gk :

xQ+
gk ∈ {0, 1} ∀k ∈ K, g ∈ Gk (96)

xQ−gk ∈ {0, 1} ∀k ∈ K, g ∈ Gk (97)

Then equation (98) is written such that it is inactive if xQ+
ik = 1. When xQ+

ik = 0, equations
(61,98) force qgk = qg.

qg − qgk ≤MQxQ+
gk ∀k ∈ K, g ∈ Gk (98)
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Equation (99) is written such that it is inactive if xQ−ik = 1. When xQ−ik = 0, equations
(61,99) force qgk = q

g
.

qgk − qg ≤MQxQ−gk ∀k ∈ K, g ∈ Gk (99)

The following two equations then handle the voltage.

Equation (100) is inactive if xQ+
ik = 0. When xQ+

ik = 1, vigk is bounded below by vig .

vig − vigk ≤M v(1− xQ+
gk ) ∀k ∈ K, g ∈ Gk (100)

For equation (101), it is inactive if xQ−ik = 0. When xQ−ik = 1, vigk is bounded above by vig .

vigk − vig ≤M v(1− xQ−gk ) ∀k ∈ K, g ∈ Gk (101)

Since there exists MQ and M v such that for all MQ ≥MQ and M v ≥M v, the equations (96,
97, 98, 99, 100, 101) are an equivalent reformulation of (93). Table (10) shows simplified
equations (98, 99, 100, 101) for all combinations of binary variables xP+

gk and xP−gk . The
gray highlighted cells are the inactive constraints under the specified solution for the binary
variables.

xQ+
gk xQ−gk (98) 99) (100) (101)

1 1 qgk ≥ −MQ + qg qgk ≤MQ + q
g

vigk ≥ vig vigk ≤ vig
0 1 qgk ≥ qg qgk ≤MQ + q

g
vigk ≥ −M v + vig vigk ≤ vig

1 0 qgk ≥ −MQ + qg qgk ≤ q
g

vigk ≥ vig vigk ≤M v + vig
0 0 qgk ≥ qg qgk ≤ q

g
vigk ≥ −M v + vig vigk ≤M v + vig

Table 10: Equations (10) shows simplified equations (98, 99, 100, 101) under all combinations
of binary variables xQ+

gk and xQ−gk values. All equations in Table (10) are written ∀k ∈ K, g ∈
GP
k . MQ and M v are sufficiently large such that when appear in the simplified equations

(10) shows simplified equations (98, 99, 100, 101), the constraints will not be binding in any
feasible solution; these constraints have been shaded gray in Table (10).

The first row, when xQ+
gk = 1 and xQ−gk = 1, the generator has sufficient enough reactive

power support to maintain the bus voltage magnitude at the pre-contingency voltage set
point, i.e., vigk = vig ; this corresponds to the first state described by (93). The second row

represents the second state in (93); with xQ+
gk = 0 and xQ−gk = 1, qgk = qg due to (61,98) and

vigk must be bounded above by vig , (101), signifying that the generator ran out of reactive
power support and could not maintain the post-contingency bus voltage magnitude at the
pre-contingency voltage set point. The third row represents the third state in (93); with
xQ+
gk = 1 and xQ−gk = 0, qgk = q

g
due to (61,99) and vigk must be bounded below by vig , (100),

signifying that the generator could not reduce the post-contingency bus voltage magnitude to
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the pre-contingency voltage set point. The last row represents an invalid (infeasible) solution
for the binary variables; based on the defined equations, it is not possible for both binary
variables to take on a value of zero. This infeasibility is directly imposed as can be seen by
the resulting inequalities in the last row that simultaneously force the generator’s reactive
power production to be below its min capacity and above its max capacity. Entrants could
choose to add a combinatorial cut that directly excludes this state, though such a constraint
is not necessary to obtain a valid solution.

3.16 Optimization model

The objective is to minimize c.

The variables are: (c, cg, c
σ, cσk , tgh, ∆k, vi, θi, b

CS
i , σP+

i , σP−i , σQ+
i , σQ−i , σSe , σSf , pg,

qg, p
o
e, p

d
e, q

o
e , q

d
e , p

o
f , p

d
f , q

o
f , q

d
f , vik, θik, b

CS
ik , σP+

ik , σP−ik , σQ+
ik , σQ−ik , σSek, σ

S
fk, pgk, qgk, p

o
ek, p

d
ek,

qoek, q
d
ek, p

o
fk, p

d
fk, q

o
fk, q

d
fk).

The constraints are: (1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 80, 78, 79, 81, 82, 83, 84, 85, 93).

3.17 Deviations from the focused formulation presented in
ARPA-E DE-FOA-0001952

The formulation presented in ARPA-E DE-FOA-0001952 served to give applicants an idea
of the structure of the full formulation presented here. In general, this official formulation
expands upon the focused formulation presented in ARPA-E DE-FOA-0001952 by including
transformers and shunt elements and providing detailed mathematical structure for generator
real and reactive power response to contingencies. However, this formulation incorporates
some notational deviations from the focused formulation presented in ARPA-E DE-FOA-
0001952, which are noted below.

1. In the focused formulation presented in ARPA-E DE-FOA-0001952, slack variables
representing soft constraint violations are represented by s��. In this formulation, these
variables are represented by σ�

�.

2. In the focused formulation presented in ARPA-E DE-FOA-0001952, the objective func-
tion explicitly contains cost terms for real power generation in the base case as well as
explicitly contains penalties for nodal real and reactive power violations and branch
overloading in the base case and contingencies. In this formulation, the objective func-
tion includes the cost of real power generation in the base case (cg) as well as dummy
variables for the cost of real and reactive nodal violations and branch overloading in
the base case (cσ) and the cost of real and reactive nodal violations and branch over-
loading in the contingencies (cσk). The dummy variables cσ and cσk are explicitly defined
in equations (6) and (7).
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3. In the focused formulation presented in ARPA-E DE-FOA-0001952, superscripts +
and − are used to represent origin (+) and destination (−) buses. In this formulation,
the superscripts o and d are used to denote origin (o) and destination (d) buses.
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