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Abstract
Problem specification for the PSCOPF problem in the ARPA-E com-

petition.

1 Introductory description

This document presents the formulation of the AC Optimal Power Flow
Problem with Preventive Security Constraints (PSCOPF) model to be
solved in Phase 0 of the ARPA-E Grid Optimization Competition. This
section gives an intuitive introductory description of the problem. The
authoritative specification of the problem is given in the reference section.

The overall goal of the problem is to choose generator real power out-
puts for the near term, say the next 5 to 10 minutes, so that power flow
constraints are satisfied, engineering bounds are observed, and in any re-
alistic contingency involving the loss of a piece of power grid equipment,
it is possible to recover while following certain rules of generator reaction
behavior.

Broadly the features of problem include:

• Electrical buses.

• Bus-connected elements: generators, shunts, loads, lines, transform-
ers.

• Contingencies: loss of a line or a generator or a transformer.

• Complex bus voltage and element current and power flows

• AC power flow equations.

• Engineering bounds on voltages and flows.

• PV/PQ switching: In the base case generator bus voltage magni-
tude and reactive power output are decision variables variable. In
a contingency case the voltage magnitude from the base case acts
as a set point, with generator reactive power output adjusting to
maintain that set point.

• Stylized AGC: In the base case generator real power output is an
independent variable. In each contingency case, generator real power
outputs may deviate from base case value according to a prescribed
constant of proportionality.

• The objective is to minimize the base case generation cost.
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1.1 AC Power Flow

Given a set of electrical buses and bus-connected elements, including
loads, shunts, generators, lines, 2-winding transformenrs, and 3-winding
transformers, the AC power flow problem is to determine values of bus
voltages and current flows into each element at each connection bus satis-
fying physical loaws. The relevant laws are Kirchoffs current law, Ohm’s
law, and the definition of complex power.

Voltages, currents, and power flows are represented numerically by
complex numbers, which may be expressed in rectangular or polar coor-
dinates.

Given current I through a point with voltage V , the power is S =
V ∗ conj(I) where conj() denotes the complex conjugate.

Kirchoff’s current law states that the sum of all current flows into a
bus is 0. This law is found in the PSCOPF formulation in equations ().
These equations actually state that the sum of all power flows into a bus
is 0, but this is equivalent in view of the definition of complex power.

Ohm’s law states that the current from one bus to another equals the
admittance Y times the voltage drop:

Iorig = Y ∗ (V orig − V dest)

1.2 Optimal power flow

Control variables, such as generator real power outputs and voltage mag-
nitude set points, and state variables, such as generator reactive power
outputs and branch power flows, are subject to bounds determined by
engineering considerations.

The values of the decision variables should be chosen so as to minimize
a measure of system cost. Costs that are considered by this model include
generator real power output costs.

1.3 Preventive security constraints

The values of the decision variables should be chosen not only so as to
meet constraints from the configuration of the electric grid as it is know
to be but also as it may be in the event of the loss of a piece of equipment,
or a contingency. Together with the base case, i.e. the actual currrent
system configuration, these security contingencies for a set of cases.

In each contingency case, bus voltages, branch flows, generator outputs
are all defined and must satisfy the power flow equations and engineering
bounds as in the base case. Generator real power output costs in the
contingency cases do not count toward the cost function that is to be
minimized. Only the base case cost is considered.

Real power output of a generator active in a contingency case may
differ from base case output, but the differences across all generators must
be proportional to prescribed generator participation factors:

PGen[g, k] = PGen[g, k0] + PartFactGen[g] ∗ PDelta[k]

for all contingencies k and generators g active in k.
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i ∈ I branches
j ∈ J buses
k ∈ K cases
l ∈ L generators
m ∈ M polynomial function exponents

Table 1: Primitive sets

k0 base case

Table 2: Single elements

Reactive power output of a generator g active in a contingency case k
is determined by the need to maintain the voltage of its connection bus i
at the level set in the base case, as much as possible:

QGenMin[g] ≤ QGen[g, k] ≤ QGenMax[g]

VMagMin[i] ≤ VMag[i, k] ≤ VMagMax[i]

if VMag[i, k] < VMag[i, k0] then QGen[g, k] = QGenMax[g]

if VMag[i, k] > VMag[i, k0] then QGen[g, k] = QGenMin[g]

2 Additional notes

• Competitors may assume that all lines have nonzero impedance.

• Some problem instances (scenarios) may be infeasible. Some may be
feasible even though no solution is known. Some may have a known
solution.

• There are no 3-winding transformers.

3 Formulation reference

3.1 Symbol reference

See tables.

I0 zero-impedance branches
I∗ nonzero-impedance branches
K∗ contingency cases

Table 3: Subsets
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o(i) origin bus of branch i
d(i) destination bus of branch i
c(l) connection bus of generator l

Table 4: Element-valued maps

Iorigj branches with origin bus j

Idestj branches with destination bus j
Lj generators connected to bus j
Ik branches active in case k
Jk buses active in case k
Lk generators active in case k

Table 5: Subset-valued maps

bci charging susceptance on branch i
rsi series resistance on branch i
xs
i series reactance on branch i

gsi series conductance on branch i
bsi series susceptance on branch i
τ tri transformer tap ratio on branch i
θtri transformer phase shift on branch i
smax
i maximum apparent power flow on branch i
gshj shunt conductance at bus j
bshj shunt susceptance at bus j
vmin
j minimum voltage magnitude at bus j
vmax
j maximum voltage magnitude at bus j
pdemj real power demand from bus j
qdemj reactive power demand from bus j

pgen,min
l minimum real power from generator l

pgen,max
l maximum real power from generator l

qgen,min
l minimum reactive power from generator l
qgen,max
l maximum reactive power from generator l
al participation share of generator l
flm cost coefficient of order m for generator l

Table 6: Real-valued maps
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porigik real power flow at the origin into branch i in case k

qorigik reactive power flow at the origin into branch i in case k
pdestik real power flow at the destination into branch i in case k
qdestik reactive power flow at the destination into branch i in case k
pshjk real power flow to the shunt from bus j in case k

qshjk reactive power flow to the shunt from bus j in case k

vjk voltage magnitude at bus j in case k
θjk voltage angle at bus j in case k
pgenlk real power generation from generator l in case k
qgenlk reactive power generation from generator l in case k
zcostlk generation cost of generator l in case k
p∆k pre-recovery real power shortfall in case k

Table 7: Variables

3.2 Relations satisfied by data

The data can be assumed to satisfy certain relations. These are docu-
mented here.

Each branch has a unique origin bus:

There is a unique origin bus o(i) ∈ J ∀i ∈ I (1)

Each branch has a unique destination bus:

There is a unique destination bus d(i) ∈ J ∀i ∈ I (2)

Each generator has a unique connection bus:

There is a unique connection bus c(l) ∈ J ∀l ∈ L (3)

There is a unique case designated the base case:

There is a unique base case k0 ∈ K (4)

The set of branches with impedance 0 is identified:

I0 = {i ∈ I : rsi = 0 and xs
i = 0} (5)

The set of branches with nonzero impedance is identified:

I∗ = {i ∈ I : rsi ̸= 0 or xs
i ̸= 0} (6)

All cases other than the base case are designated contingency cases:

K∗ = {k ∈ K : k ̸= k0} (7)

The set of branches originating at a given bus is identified:

Iorigj = {i ∈ I : j = o(i)} ∀j ∈ J (8)
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The set of branches teminating at a given bus is identified:

Idestj = {i ∈ I : j = d(i)} ∀j ∈ J (9)

The set of generators connected to a given bus is identified:

Lj = {l ∈ L : j = c(l)} ∀j ∈ J (10)

In each case some buses, branches, and generators are active, and some
are inactive. The set of branches active in a given case is identified:

Ik = {i ∈ I : i is active in case k} ∀k ∈ K (11)

The set of buses active in a given case is identified:

Jk = {j ∈ J : j is active in case k} ∀k ∈ K (12)

The set of generators active in a given case is identified:

Lk = {l ∈ L : l is active in case k} ∀k ∈ K (13)

At least one generator is active in each case:

Lk ̸= ∅ ∀k ∈ K (14)

At least one generator participating in AGC is active in each case:

{l ∈ Lk : al ̸= 0} ̸= ∅ ∀k ∈ K (15)

Any generator active in any contingency case is active in the base case:

Lk ⊂ Lk0 ∀k ∈ K∗ (16)

The generator real power cost functions are quadratic:

M = {0, 1, 2} (17)

The cost functions are convex:

fl2 ≥ 0 ∀l ∈ L (18)

Voltage magnitude bounds are self consistent:

vmin
j ≤ vmax

j ∀j ∈ J (19)

Generator real power output bounds are self consistent:

pgen,min
l ≤ pgen,max

l ∀l ∈ L (20)

Generator reactive power output bounds are self consistent:

qgen,min
l ≤ qgen,max

l ∀l ∈ L (21)

Bounds on branch apparent power flow are self consistent:

smax
i ≥ 0 ∀i ∈ I (22)
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The tap ratio of each branch is positive:

τ tr
i > 0 ∀i ∈ I (23)

Bus voltage magnitude bounds are positive:

vmin
j > 0 ∀j ∈ J (24)

Real power generation bounds are nonnegative:

pgen,min
l ≥ 0 ∀l ∈ L (25)

Branch conductance is defined with respect to impedance:

gsi = rsi/((r
s
i)

2 + (xs
i)

2) ∀i ∈ I∗ (26)

Branch susceptance is defined with respect to impedance:

bsi = −xs
i/((r

s
i)

2 + (xs
i)

2) ∀i ∈ I∗ (27)

3.3 Model objective

The model is posed as a minimization problem. The objective to be
minimized is the total generation cost in the base case k = k0, given by:∑

l∈Lk0

zcostlk0
(28)

3.4 Model constraints

The decision variables must satisfy a number of constraints. These are
documented here.

Cost function definition:

zlk =
∑

m∈M flm(pgenlk )m ∀k ∈ K, l ∈ Lk (29)

Bus voltage magnitudes satisfy prescribed bounds:

vmin
j ≤ vjk ≤ vmax

j ∀k ∈ K, j ∈ Jk (30)

Generator real power bounds:

pgen,min
l ≤ pgenlk ≤ pgen,max

l ∀k ∈ K, l ∈ Lk (31)

Generator reactive power bounds:

qgen,min
l ≤ qgenlk ≤ qgen,max

l ∀k ∈ K, l ∈ Lk (32)

Real power flow to the shunt at each bus is defined by the following
constraint:

pshjk = gshj v2jk ∀k ∈ K, j ∈ Jk (33)

Bus shunt reactive power flow definition:

qshjk = −bshj v2jk ∀k ∈ K, j ∈ Jk (34)
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According to Ohm’s law and the definition of complex power, real
power flow into a branch at the origin bus is a function of voltages at the
origin and destination buses, if the branch has nonzero impedance:

porigik =(gsi/(τ
tr
i )2)v2o(i)k

− (gsi/τ
tr
i )vo(i)kvd(i)k cos(θd(i)k − θo(i)k + θtri )

+ (bsi/τ
tr
i )vo(i)kvd(i)k sin(θd(i)k − θo(i)k + θtri )

∀k ∈ K, i ∈ I∗ ∩ Ik

(35)

Nonzero-impedance branch reactive power origin flow definition:

qorigik =((−bsi − bci/2)/(τ
tr
i )2)v2o(i)k

+ (bsi/τ
tr
i )vo(i)kvd(i)k cos(θd(i)k − θo(i)k + θtri )

+ (gsi/τ
tr
i )vo(i)kvd(i)k sin(θd(i)k − θo(i)k + θtri )

∀k ∈ K, i ∈ I∗ ∩ Ik

(36)

Nonzero-impedance branch real power destination flow definition:

pdestik =gsiv
2
d(i)k

− (gsi/τ
tr
i )vo(i)kvd(i)k cos(θd(i)k − θo(i)k + θtri )

− (bsi/τ
tr
i )vo(i)kvd(i)k sin(θd(i)k − θo(i)k + θtri )

∀k ∈ K, i ∈ I∗ ∩ Ik

(37)

Nonzero-impedance branch reactive power destination flow definition:

qdestik =(−bsi − bci/2)v
2
d(i)k

+ (bsi/τ
tr
i )vo(i)kvd(i)k cos(θd(i)k − θo(i)k + θtri )

− (gsi/τ
tr
i )vo(i)kvd(i)k sin(θd(i)k − θo(i)k + θtri )

∀k ∈ K, i ∈ I∗ ∩ Ik

(38)

According to Krirchoff’s voltage law, the voltage drop across a branch
with impedance 0 is given by a fixed scalar multiple. Zero-impedance
branch voltage magnitude constraint:

vd(i)k − vo(i)k/τ
tr
i = 0 ∀k ∈ K, i ∈ I0 ∩ Ik (39)

Zero-impedance branch voltage angle constraint:

θd(i)k − θo(i)k + θtri = 0 ∀k ∈ K, i ∈ I0 ∩ Ik (40)

According to Kirchoff’s current law, the power flow into the origin
and destination of a branch with impedance 0 satisfy simple conservation
constraints. Zero-impedance branch real power constraint:

porigik + pdestik = 0 ∀k ∈ K, i ∈ I0 ∩ Ik (41)

Zero-impedance branch reactive power constraint:

qorigik + qdestik + bcv2d(i)k = 0 ∀k ∈ K, i ∈ I0 ∩ Ik (42)

The apparent power flow on a branch at both origin and destination
must satisfy prescribed bounds. Branch origin apparent flow bound:√

(porigik )2 + (qorigik )2 ≤ smax
i ∀k ∈ K, i ∈ Ik (43)
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Branch destination apparent flow bound:√
(pdestik )2 + (qdestik )2 ≤ smax

i ∀k ∈ K, i ∈ Ik (44)

According to Kirchoff’s current law the sum of all currents into a bus
is 0. Taking complex conjugates and multiplying by voltage, we find that
the sum of all power flows into a bus is 0. This is formulated as balance
constraints fro real and reactive power. Bus real power balance:∑

l∈Lj∩Lk

pgenlk =pshjk + pdemj

+
∑

i∈I
orig
j ∩Ik

porigik +
∑

i∈Idestj ∩Ik

pdestik

∀k ∈ K, j ∈ Jk

(45)

Bus reactive power balance:∑
l∈Lj∩Lk

qgenlk =qshjk + qdemj

+
∑

i∈Idest
j ∩Ik

qorigik +
∑

i∈Idestj ∩Ik

qdestik

∀k ∈ K, j ∈ Jk

(46)

Automatic generation control (AGC) is modeled in a stylized fashion.
Generator real power output in a contingency case may differ from that
in the base case, but the differences across all generators for a fixed con-
tingency must be proportional to prescribed participation factors. Con-
tingency case real power generation definition in terms of base case real
power and participation factors:

pgenlk = pgenlk0
+ alp

∆
k ∀k ∈ K∗, l ∈ Lk (47)

Physically, generator reactive power output is not independently con-
trollable. Rather, a voltage magnitude set point is supplied and the gener-
ator provides reactive power in order to maintain that voltage magnitude
set point. If the set point cannot be maintained then it must be that the
generator reactive power is at a bound. Specifically, the convention is that
increasing reactive power generation tends to increase voltage magnitude,
so, if the voltage is below the set point, then the generator reactive power
must be at its upper bound, and if the voltage is above the set point, then
the generator reactive power must be at its lower bound. This generator
behavior is called PV/PQ switching, since a generator bus is a PV bus
as long as the voltage can be maintained, but becomes a PQ bus when
the voltage can no longer be maintained as the generator reactive power
has hit a bound. In this model, the base case generator reactive power
outputs are considered to be independently controllable variables, but in
contingency cases, the generator reactive power outputs are subject to
PV/PQ switching, with the voltage magnitude set points provided by the
base case voltage magnitudes. Contingency case voltage magnitude under
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set point at a generator bus implies maximum reactive power output:

min( max(0, vjk0 − vjk),
max(0, qgen,max

l − qgenlk ) ) = 0
∀k ∈ K∗, l ∈ Lk, j = c(l)

(48)

Contingency case voltage magnitude over set point at a generator bus
implies minimum reactive power output:

min( max(0, vjk − vjk0),

max(0, qgenl − qgen,min
lk ) ) = 0

∀k ∈ K∗, l ∈ Lk, j = c(l)
(49)

Note: The constraints (48,49) enforcing complementarity between gen-
erator bus voltage magnitude reactive power output are formulated using
the min() function in order to permit a natural and unambiguous def-
inition of constraint violation. Both terms in the min() functions are
expressed as per unit quantities. For greater understanding of these con-
straints, they can be formulated logically as

if vjk < vjk0

then qgenlk = qgen,max
l

∀k ∈ K∗, l ∈ Lk, j = c(l)
(50)

and
if vjk > vjk0

then qgenlk = qgen,min
l

∀k ∈ K∗, l ∈ Lk, j = c(l)

(51)

The min() formulation (48,49), not the logical formulation (50,51), is used
for the evaluation of constraint violation in a given solution.

4 References

Ray D. Zimmermann and Carlos E. Murillo-Sánchez. Matpower 6.0b1
User’s Manual. June 1, 2016. Accessed August 10, 2016, from http://www.pserc.cornell.edu/matpower/manual.pdf

Wood & Wollenberg.

10


