
Occam’s Razor

The Art of Simplification: Tackling Large-Scale
Unit Commitment and AC Optimal Power Flow Problems

Wenyuan Tang

(Occam’s Razor)

Grid Optimization (GO) Competition Challenge 3

November 15, 2023

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 1 / 17



Occam’s Razor

Experience

Before the competition, ACOPF had been the “most familiar stranger” to me

My research had been focused on analysis and design of market mechanisms in
electricity markets, where economic dispatch and pricing is based on DCOPF

I knew there are tools for ACOPF (e.g., MATPOWER), but I had never written my
own ACOPF program (even for a toy case)

I have followed the GO Competition since Challenge 1, and I do believe those are
important open problems that are worth our efforts, but participating in the
competition seems too risky for junior faculty under the tenure clock

Recently, I participated in some American-Made Challenges (Solar Forecasting
Prize, Net Load Forecasting Prize, Hydropower Operations Optimization Prize),
through which I built self-confidence and felt ready to compete with other prestigious
teams in the GO Competition, the most difficult competition so far

I got 6 weeks of (relatively) free time before the deadline of Event 4, and decided it
was time to take the challenge!

I thought it was a great deal: even if I couldn’t get an award, at least I would learn
how to formulate the UC and ACOPF problem in practice and how to write a
program to solve it (at least for a toy case)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 2 / 17



Occam’s Razor

Experience

Still, 6 weeks is too short: I kept myself extremely focused

The problem formulation is already overwhelming: more comprehensive than any
model I have ever seen in the literature

I even thought some assumptions or equations in the problem formulation were not
correct, which turned out to be my misunderstanding

At the beginning, I tried to use Python and Gurobi (my favorite solver)

While Gurobi currently supports general nonconvex constraints, it is a global
optimizer and may not be suitable for such a hard problem

Then I found Ipopt, a popular nonlinear solver for local optimization

Unfortunately, it was not easy for me to interface Ipopt from Python (it shouldn’t be
the case, but I didn’t have time to figure it out)

Then I found the benchmark algorithms from previous competitions were written in
Julia/JuMP, and I decided to learn Julia/JuMP in one day and convert the previous
code from Python to Julia in another day (thanks to ChatGPT)

It was a wise choice: it is very convenient to specify the constraints with a modeling
language like JuMP, and calling Gurobi and Ipopt from JuMP is a breeze

The rest is algorithm development (with lots of trial and error, back and forth)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 3 / 17



Occam’s Razor

Methodology

I believe in the principle of Occam’s razor: Entia non sunt multiplicanda praeter
necessitatem (entities must not be multiplied beyond necessity)

A similar saying attributed to Albert Einstein: Everything should be made as simple
as possible, but not any simpler

My realistic goal was to develop a good (but not necessarily the “best”) algorithm
that can stably generate feasible and reasonably good solutions within the time limits

The original problem is computationally intractable: large-scale, mixed-integer,
non-convex; multi-period, zonal reserve, etc.

To generate a feasible solution within reasonable amount of time, a lot of
simplifications need to be made

At the upper level, my proposed algorithm has a simple structure: UC for the entire
time horizon, and then ACOPF for each time period

At the lower level, the purpose is to alter the feasible region and the objective
function through relaxation, restriction, and approximation, to simplify the structure
of each subproblem

The key is to find adequate alterations and (if needed) projections onto the original
feasible region: the art of simplification

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 4 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

For difficult cases, conduct a very simple UC which tries to follow the initial statuses
as much as possible (similar to the prior operating point algorithm)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 5 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

For most cases, conduct a simple UC which ignores flows (and therefore also
voltages and line losses)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 6 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

Since we will conduct ACOPF for each time interval given fixed UC, we need to set
additional bounds for variables (such as power) to respect ramping constraints

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 7 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

This step is the computational bottleneck: depending on the case, we may conduct a
full ACOPF (with reserves) or a partial ACOPF (without reserves)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 8 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and compute flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

This step ensures the voltages and flows are feasible: we only adopt (or adjust)
voltages from the previous ACOPF solution

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 9 / 17



Occam’s Razor

Algorithm

Algorithm Pseudocode of Occam’s Razor’s solution
(1–135) read elementary data and compute derived data
(136–185) configuration of algorithm parameters
if difficult case then

(186–238) very simple UC: min (# of startups + # shutdowns) (MILP by Gurobi)
else

(239–544) simple UC: assuming a one-bus system (MILP by Gurobi)
end if
(545–567) set variable bounds for ramping constraints given UC
for t = 1 to T do

(568–975) ACOPF with or without reserves (NLP by Ipopt)
(976–1076) fix voltages (if needed, adjustment for feasibility) and flows
(1077–1336) ACOPF with reserves given fixed voltages and flows (LP by Gurobi)

end for
(1337–1406) write solution

Finally, we conduct a full ACOPF which is simple since voltages and flows are given:
it is also convenient to ensure numerical precision in this step

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 10 / 17



Occam’s Razor

Some Other Simplifications

(Objective) ignore downtime-dependent startup costs

(Objective) ignore max/min energy over multiple intervals (except simple UC)

(Objective) ignore post-contingency

(Variable) set step for each shunt as initial status

(Variable) set phase difference and winding ratio for each transformer as initial status

(Variable) turn on all branches if switching is allowed

(Constraint) relax max in endogenous reserve requirements

pmax
nt = max

j∈J
pr
n

pjt −→ pmax
nt ≥ pjt, ∀j ∈ Jpr

n

(Constraint) restrict violation in max/min energy over multiple intervals (simple UC){∑
t∈T en,max

w
dtpjt ≤ emax

w + e+w, ∀w ∈W en,max
j∑

t∈T en,min
w

dtpjt ≥ emin
w − e+w, ∀w ∈W en,min

j

−→

{∑
t∈T en,max

w
dtpjt ≤ emax

w + e+j , ∀w ∈W en,max
j∑

t∈T en,min
w

dtpjt ≥ emin
w − e+j , ∀w ∈W en,min

j

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 11 / 17



Occam’s Razor

Configuration

8316 6717 6708 6049 4224 2000 1576 other

max wall time 21/120/280 sec 24/120/280 sec

lazy uc T F/T/T T F

co opt F F/T/T F T

fast solver T/F/F F

stable iter F/T/T T F/T/T F T

max wall time: time limit (Divisions 1/2/3) per time interval for (568–975) ACOPF

lazy uc: use very simple UC (T) or simple UC (F)

co opt: reserves are consider (T) or not (F) in (568–975) ACOPF

fast solver: the linear solver in Ipopt is MA57 (T) or MA27 (F)

stable iter: the initial value for the barrier parameter in Ipopt is 0.03 (T) or 0.1 (F)

Difficult cases are more sensitive to the algorithm parameters

The above configuration is determined based on the previous datasets, which may
not be suitable for Event 4 datasets

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 12 / 17



Occam’s Razor

Results

The proposed algorithm is easy to understand

The proposed algorithm is easy to implement: 1406 lines of code

The proposed algorithm is configurable for various datasets

The proposed algorithm is guaranteed to generate feasible solutions within the time
limits: true for all 669 cases in Event 4

The generated solutions are reasonably good

Event 4 Division 1 2 3

Rank 4th 7th 5th

Event 4 Division 4 5 6

Rank (best score count) 6th (3) 8th (1) 8th (0)

The proposed algorithm is not good at finding the “best” solutions: achieving the
best scores for only 4 out of 669 cases

The same program would have achieved better performance on Event 3 datasets
(especially for Divisions 4/5/6): Event 4 datasets may be very different from Event 3
datasets; other teams may have improved substantially after Event 3

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 13 / 17



Occam’s Razor

Questions Regarding the Algorithm

1. What process did your team use in deciding the algorithmic approach?
See the aforementioned; try to make it as simple as possible, but not any simpler

2. Did your team consider/use a hybrid approach by running different types of
algorithms in parallel?
No, but I may consider it if I have time

3. Did you/your team consider adjusting the parameters/heuristics of your algorithm
based on network characteristics? If yes, explain how?
Yes, see the aforementioned

4. Did you/your team try to use any machine learning approach to learn the Sandbox
datasets?
No, because I may need many more cases to train such a machine learning model

5. Did you/your team consider changing the algorithmic approach/modeling approach
when new datasets are published? If yes, why?
No, because I wanted to keep a simple structure of the algorithm

6. Did the teams consider a “simultaneous multi-period” OPF approach (as opposed to
considering each time period individually)? If so, how did it scale and what, if any,
were the benefits to solution quality?
No, but I may consider it if I have time

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 14 / 17



Occam’s Razor

Questions Regarding the Algorithm

7. How (if at all) did your team incorporate reserve constraints into the OPF
subproblem(s)?
See the aforementioned

8. UC determines the binary variables and some continuous variables. We understand
fixing the binary variables makes the remaining ACOPF a continuous non-convex
programming. How do you treat the decision of the continuous variables determined
by UC?
Ignore the decision of the continuous variables

9. How do you update UC decisions if you find the first UC is not optimal or feasible?
The UC from the proposed algorithm is always feasible because most constraints
are soft constraints; given fixed UC, the ramping constraints (which are hard
constraints) have been taken care of in the proposed algorithm

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 15 / 17



Occam’s Razor

Questions Regarding the Data

1. What were the 10 most difficult scenarios to solve? And why?
Some scenarios in 2000D2, 2000D3, 4224D2, 6717D1, and all scenarios in 23643,
which I got negative objective values

2. What were the 10 least difficult scenarios to solve? And why?
The others are relatively easy; smaller cases are generally easier to solve

3. Did you find difficulties with industrial networks (not released networks)? Explain
why?
No before Event 4, but yes in Event 4; I didn’t find the reason

4. Did you notice considerable differences in difficulty amongst the networks?
Yes, and sometimes smaller cases (such as 2000) can also be difficult

5. Did you find any idiosyncrasies of specific grids?
UC for some cases is difficult; reserve requirements for some cases are stringent

6. Did you notice unusual behaviors/data in any grids?
For some cases, the top teams’ scores have large differences

7. Which constraints were more challenging to satisfy?
Reserve requirements; bus power balance (when ACOPF does not converge)

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 16 / 17



Occam’s Razor

Questions Regarding the Data

8. How would you compare the computational complexity of larger grids with the small
grids?
Network size is only a rough indicator (other data also matters); computational
complexity also depends on the algorithm

9. Regarding the data input format, is it easy to parse?
Yes

10. What are the main differences in the optimization behavior of D1, D2 and D3?
Either D1 (which has a small time limit) or D2 (which has the largest number of time
intervals) can be the most difficult; D3 is generally easier than D2; it also depends
on the algorithm

Thank you, the GO Competition Administration Team!

The Art of Simplification: Tackling Large-Scale UC and ACOPF GO Competition Challenge 3 17 / 17


