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STAYING BIG OR GETTING SMALLER
Expected structural changes in the energy system made possible by the increased use of digital tools
[ tomorrow |

yesterday

Envision of Future Energy Systems/ Smart Grids: ll !!] - \\,‘,,‘
- Decentralized .'ﬂ = - -
« Flexible with smart devices
- Consumer can actively participate (e.g., EVSs) :g/g. %
What smart grid means?
- Daily/market operations 9 ) %%ﬁ
o Decentralized optimization ONED) [iarsisio] 8:;
o Lots of new devices (Storages, EVS)
o Human interaction (Consumer response)
WA =111
« Security and privacy

o New approach to share information
an & pol fit

« Market design & policy
o Renewable energy zones

passive, only paying active, participating in the system
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South Australia
§1 South East SA \
$2 Riverland \ |
$3 Mid-North SA ‘ \
S4 Yorke Peninsula )
S5 Northem SA
S6 Leigh Creek
$7 Roxby Downs
S8 Eastern Eyre Peninsula

$9 Western Eyre Peninsula
$10 South East SA Coast

Candidate Renewable Energy Zone (REZ)
~ ) Candidate Offshore Renewable Energy Zone
dO Anticipated /| Committed
(O-0O Actionable
O-0O Conceptual options

enewable Energy Zone
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New South Wales

N1 North West NSW
N2 New England

N3 Central-West Orana
N4 Broken Hill

N5 South West NSW
N6 Wagga Wagga

N7 Tumut

N8 Cooma-Monaro
N9 Hunter-Central Coast
N10 Hunter Coast

N11 Illawarra Coast
N12 lllawarra

Victoria

Ovens Murray
Murray River
Western Victoria
South West Victoria
Gippsland

Central North Victoria
Gippsland Coast
Portland Coast

Tasmania

North East Tasmania

North West Tasmania
Central Highlands

North West Tasmania Coast
North East Tasmania Coast
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Challenge in decentralized setting

- Decentralized agent, could:
o limited computational power
o limited global information (e.g., might not know the line param.)
0 privacy / security

CORITECH
¢sERVlcES

— Currently, many smart grid applications either:
o Discard grid side completely

v2G ENABLED
EV FAST CHARGER

0 Support a “linearized view” of grid
m V2G model,
m Utility portfolio optimization,
m Large planning model with stability

0 Hesitate to use nonlinear equations

— Huge gap between transmission/distribution grid community and the
application community in smart grid
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Challenge in decentralized setting

Given that the future smart grid:
o Data-intensive (local information)
o User-oriented, and
o likely Al-based

CORITECH
¢sERVICES

V2G ENABLED y
EV FAST CHARGER

Question:
o Instead of applying a standard linearization model for smart grid ...

O
m Can it be general?

m E.g. Transfer from one app to another?
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End-to-End Learning @ 30,000 ft

2 Why not End-to-End Deep Learning?
2 Predict the most economical generation dispatch, s.t.
All grid & operational constraints are satisfied

System status System dispatch

A Future Energy System: Line switching, utility cost changes, dynamic battery status, etc
— Hard to incorporate
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AC Optimal Power Flow

AC-OPF problem
o Core subproblem within grid operations

Model 1 O(S%): AC Optimal Power Flow

o Compute the most economical generation

dispatch s.t.: input: S; Vie N

Grid/operational constraints are varlables: S7,V; Vie N, Sy V(i,j) e Ev E"

feasible minimize: Z c21(R(S?))? + c1aR(S?) + co (1)
ie N
. subject to: V. =0, se N (2)
Non-linear & non-convex . £ oo . '
vi < |Vi| <vi Vie N (3)
Computationally difficult for large syst % < £VV7) <6y Vg e B ®
S7 < 8) <87 VieN (5)
. T T . ” T S1i i, 1 "

Market operations: AC-OPF is “linearized |Si;| < si5 V(i,j)e EVE (6)
S? — 8¢ = Y nepopr Sy Vie N (7)
Many famous linearization/convexification: Sy = Y lVil’ = YIViVi* V(i,j)e EVE"  (®)

DC/QC /SOCP / SDP / Moment-based/ etc
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End-to-End Centralized Learning

3 Why Machine Learning on AC-OPF?

Q Frequency: Timeline
o Every 5-15 min (real-time market) _, |
o Every couple of hours (look-ahead *period coses ot 10:00

reliability assessment)
o Every day (day-ahead market)
o Every week (capacity market)
a Every few seconds (in the future smart

OPERATING DAY -1 OPERATING DAY

——

g rl d) Re-offer period opens Resource adequacy Real Time Continue to execute
13:30*— 14:00 assessment (mvmuﬁtv bidding SCRAthroughout
constrained reliability window for the operating day
. assessment (SCRA) complete next day
D Abundant data tO traln for operating day at 17:00 opens at 18:30
Real-Time Market (RTM)
P See WEM101: Day-Ahead E Market
2 More accurate decisions * Ayrheat EneTRy e

2 Prediction is fast => More time for
operators to handle other
operational/engineering issues

MONASH
N MONASH  [i2abianon
©’ University  TECHNOLOGY




AC-OPF End-to-End DNN

1 OPF-DNN [AAAI 2020]: Supervised learning + constraint penalty

Error + dispatch Error + dispatch
Error + voltage Error + angle bound bound errors bound errors
bound errors errors
Ly ||V2a] (Lo |[V2b) [Lp|[V3a) Lq|[Vsb]
Nominal load ulln M 1 [ g

Uy
demand S =

O
atalll e e e e
(pd.qd)[ ) |

Load demand

g9
) Po| | dp

o - - o :[V6a ‘_V(;‘
" 9 I I:l (ﬁf (if) Kirchoff's Current Law

v D Flow conservation
errors

V4 lf/_-‘;u V5p | Ohm’s Law

Thermal bound errors

. . 3 : C ey + Ohm’s law errors
Naive implementation = lots of “computational/training” issues ...
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Distributed/Federated Learning

Why?
« Align with Smart Grid decentralization requirement

« Agents are natural representation for energy zones .
Server coordinating

the training of a

« Future vision: Machine Learning for OPTimization Problem global Al model

(ML4OPT)
Why AC-OPF for the future smart grid?

. sub-problem of many grid operations
o Market clearing

(o= ) [O= |
. grid problems need AC-OPF

o V2G: EV supplying power to grid
o Emergency backstop (Voltage congestion)

Devices with
local Al models

« Future HVDC grid/zone still need some time to take over
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High-level Architecture

« Data-Driven Linearization Learning

1. Each line agent, in parallel, trains a linear approximation
function f (one for each side) to approximate the AC power
flow

- based on observed data/state estimation

2. *Each bus agent, in parallel, aggregated all the associated
line approximation function f, then retrain to satisfy power
balance constraints

*Still in development
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Line agent

- AC Power Flow Equation
o Ohm’s Law (non-linear part of ACOPF)

(pij» qij) = f(V, V3, 0;,6;)
o Describes relationship between:
Line (power) flow & voltage

Line agent’s view:
- Given a dataset D;; = {(pijs, Gijs» Vis) Vjs, Bis, 0s) |V s}, find a linear
approximation function f s.t.

min z L [(pijs; qijs); f (ViS; I/jS' HiS' HJS)]
S

Voltage — — Power
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Bus agent

- Power Flow Balance Equation
o Energy Conservation Law

> 0ijpqij) =X f,V,6,,0;,) =0

Bus agent’s view:
- Given the dataset D;; from each Line agent, correct their linear

approximation function f;; s.t. ¥f;; =0

Voltage .——v >—>I Power
Voltage .——> >—>I Power
Voltage P >—>I Power
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Preliminary result & analysis (2000 epoch, 3 layers)
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Preliminary result & analysis (2000 epoch, 2 layers)

AC-OPF Optimality Gap (%)
15
10 —

Linearized
- B Gap=0.1

X
PF Eq. +/- 10 i
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-15 . B Gap=0.00625
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Conclusion & Future Work

- Introduce issues on grid incorporation in the smart grid / future energy systems

- Distributed Linearization Model for (AC) Power Flow
- Data-driven approach
- Distributed
- Line: trains power flow equation
- Bus: enforces power balance constraints

- Preliminary Results
- Power flow training
- AC OPF validation
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