

Data-Driven Linearization for Optimal Power Flow

Grid Incorporation for Distributed Energy System

Terrence W.K. Mak

- Introduction
 - Motivation: Smart Grid applications
- Background
 - Optimal Power Flow
 - End-to-end learning
- Data Driven Linearization for OPF
 - $_{\circ}$ Line flow learning
 - Bus correction
- Preliminary Result

Future Energy Systems

Envision of Future Energy Systems/ Smart Grids:

- Decentralized
- Flexible with smart devices
- Consumer can actively participate (e.g., EVs)

What smart grid means?

- Daily/market operations
 - Decentralized optimization
 - Lots of new devices (Storages, EVs)
 - Human interaction (Consumer response)
- Security and privacy
 - New approach to share information
- Market design & policy
 - Renewable energy zones

Australia Renewable Energy Zone

Challenge in decentralized setting

- Decentralized agent, could:
 - o limited computational power
 - o limited global information (e.g., might not know the line param.)
 - o privacy / security
- \rightarrow Currently, many smart grid applications either:
 - o <u>Discard</u> grid side completely
 - o Support a "<u>linearized</u> view" of grid
 - V2G model,
 - Utility portfolio optimization,
 - Large planning model with stability
 - o Hesitate to use nonlinear equations

 \rightarrow Huge gap between transmission/distribution grid community and the application community in smart grid

Challenge in decentralized setting

Given that the future smart grid:

- Data-intensive (local information)
- User-oriented, and
- o likely Al-based

Question:

- \circ Instead of applying a standard linearization model for smart grid \ldots
- o Would local agent be able to do linearization with data better?
 - Can it be general?
 - E.g. Transfer from one app to another?

End-to-End Learning @ 30,000 ft

□ Why not End-to-End Deep Learning?

□ Predict the most economical generation dispatch, s.t.

All grid & operational constraints are satisfied

 \Box Future Energy System: Line switching, utility cost changes, dynamic battery status, etc \rightarrow Hard to incorporate

- Introduction
 - Motivation: Smart Grid applications
- Background
 - Optimal Power Flow
 - End-to-end learning
- Data Driven Linearization for OPF
 - Line flow learning
 - Bus correction
- Preliminary Result

AC Optimal Power Flow

- AC-OPF problem
 - Core subproblem within grid operations
 - Compute the most economical generation dispatch s.t.:
 - Grid/operational constraints are feasible
- Non-linear & non-convex
- Computationally difficult for large systems
- Market operations: AC-OPF is "linearized"
- Many famous linearization/convexification: DC / QC / SOCP / SDP / Moment-based/ etc

a		
Model 1 $\mathcal{O}(S^d)$: AC Optimal Power Flow		
input:	$S_i^d \forall i \in N$	
variables:	$S_i^g, V_i \ \forall i \in N, \ S_{ij} \ \forall (i,j) \in E \cup E^R$	
minimize:	$\sum_{i=1}^{n} c_{2i}(\Re(S_i^g))^2 + c_{1i}\Re(S_i^g) + c_{0i}$	(1)
subject to:	$\angle V_s = 0, \ s \in N$	(2)
	$v_i^l \leqslant V_i \leqslant v_i^u \forall i \in N$	(3)
	$\theta_{ij}^l \leqslant \angle (V_i V_j^*) \leqslant \theta_{ij}^u \ \forall (i,j) \in E$	(4)
	$S_i^{gl} \leqslant S_i^g \leqslant S_i^{gu} \ \forall i \in N$	(5)
	$ S_{ij} \leq s_{ij}^u \forall (i,j) \in E \cup E^R$	(6)
	$S_i^g - S_i^d = \sum_{(i,j) \in E \cup E^R} S_{ij} \forall i \in N$	(7)
	$S_{ij} = Y_{ij}^* V_i ^2 - Y_{ij}^* V_i V_j^* \forall (i,j) \in E \cup E^R$	(8)

End-to-End Centralized Learning

□ Why Machine Learning on AC-OPF?

□ <u>Frequency:</u>

- □ Every 5-15 min (real-time market)
- Every couple of hours (look-ahead reliability assessment)
- Every day (day-ahead market)
- Every week (capacity market)
- Every few seconds (in the future smart grid)
- Abundant data to train
- More accurate decisions
- Prediction is fast => More time for operators to handle other operational/engineering issues

Timeline

See WEM101: Day-Ahead Energy Markets

AC-OPF End-to-End DNN

□ OPF-DNN [AAAI 2020]: Supervised learning + constraint penalty

- Introduction
 - Motivation: Smart Grid applications
- Background
 - Optimal Power Flow
 - End-to-end learning
- Data Driven Linearization for OPF
 - Line flow learning
 - Bus correction
- Preliminary Result

Distributed/Federated Learning

Why?

- Álign with Smart Grid <u>decentralization requirement</u>
- Agents are natural representation for energy zones
- Future vision: Machine Learning for OPTimization Problem (<u>ML4OPT</u>)

Why AC-OPF for the future smart grid?

- <u>Core</u> sub-problem of many grid operations

 Market clearing
- <u>Envisioning future</u> grid problems need AC-OPF
 - V2G: EV supplying power to grid
 - Emergency backstop (Voltage congestion)
- Future HVDC grid/zone still need some time to take over

High-level Architecture

- Data-Driven Linearization Learning
- 1. Each line agent, in parallel, trains a linear approximation function \hat{f} (one for each side) to approximate the AC power flow
 - based on observed data/state estimation
- 2. *Each bus agent, in parallel, aggregated all the associated line approximation function \hat{f} , then retrain to satisfy power balance constraints

*Still in development

Line agent

- AC Power Flow Equation
 - Ohm's Law (non-linear part of ACOPF)

$$(p_{ij}, q_{ij}) = f(V_i, V_j, \theta_i, \theta_j)$$

 Describes relationship between: Line (power) flow & voltage

Line agent's view:

• Given a dataset $D_{ij} = \{(p_{ijs}, q_{ijs}, V_{is}, V_{js}, \theta_{is}, \theta_{js}) | \forall s \}$, find a linear approximation function \hat{f} s.t.

min
$$\sum_{s} L\left[(p_{ijs}, q_{ijs}), \hat{f}(V_{is}, V_{js}, \theta_{is}, \theta_{js})\right]$$

Bus agent

- Power Flow Balance Equation
 - Energy Conservation Law $\sum (p_{ij}, q_{ij}) = \sum f(V_i, V_j, \theta_i, \theta_j) = 0$

Bus agent's view:

• Given the dataset D_{ij} from each Line agent, correct their linear approximation function $\hat{f_{ij}}$ s.t. $\sum \hat{f_{ij}} = 0$

- Introduction
 - Motivation: Smart Grid applications
- Background
 - Optimal Power Flow
 - End-to-end learning
- Data Driven Linearization for OPF
 - Line flow learning
 - Bus correction
- Preliminary Result

Preliminary result & analysis (2000 epoch, 3 layers)

Preliminary result & analysis (2000 epoch, 2 layers)

AC-OPF Optimality Gap (%)

Conclusion & Future Work

- Introduce issues on grid incorporation in the smart grid / future energy systems
- Distributed Linearization Model for (AC) Power Flow
 - Data-driven approach
 - Distributed
 - Line: trains power flow equation
 - Bus: enforces power balance constraints
- Preliminary Results
 - Power flow training
 - AC OPF validation

