Scaling Security Constrained Optimal Power Flow to Multi-Timestep

Constance Crozier Hussein Sharadga Javad Mohammadi Kyri Baker

INFORMS Annual Meeting 2023

October 15, 2023

UT Austin

CU Boulder

Georgia Tech

Javad Mohammadi Team Lead

Hussein Sharadga Postdoc

Kyri Baker Co-Pl Constance Crozier Co-PI / Postdoc Challenge 2

Event 3: 2nd overall Final Event Outside of prizes

Challenge 3

Event 2 1st overall Event 3 3rd overall Final Event Outside of prizes

э.

► 4 Ξ

Challenge 2

- 5 minute time-limit
- Up to six nodes available
- Single-time period

Challenge 3

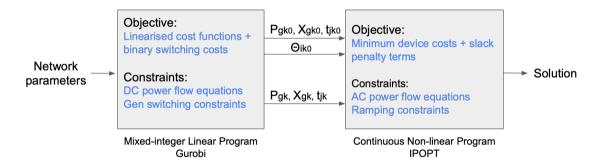
- 10 minute time-limit
- Single node no parallel computing
- Multi-time period up to 48 steps

Minimum number of decision variables to guarantee feasibility

(no. of devices \times 2 + no. of buses \times 2) \times no. of timesteps

Minimum number of constraints (not including bounds)

(no. of devices + no. of branches \times 2 + no. of buses \times 2) \times no. of timesteps



▶ 4 3 October 15, 2023

Ramping limits

- 2 Unit commitment decisions up and down time
- 3 Energy constraints

・ロト ・回ト ・ヨト ・ヨト

а.

Ramping limits

$$egin{aligned} m{
ho}_{j,t} &\leq m{
ho}_{j,t-1} + \Delta \ m{
ho}_{j,t} &\leq m{
ho}_{j,t}^{max} \end{aligned}$$

2 Unit commitment decisions – up and down time

3 Energy constraints

э.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Keep a set of variables for every time-step

Pros: Maintains whole feasible space

Cons: For our approach, even after throwing out unit commitment, this would not reliably finish in 10m for networks larger than 4k.

Finding a single solution that will be feasible for all time-steps

$$p_{j,t}^{min} = \max(p_{j,t}^{min} orall t)$$

 $p_{j,t}^{max} = \min(p_{j,t}^{max} orall t)$

э

9/12

Finding a single solution that will be feasible for all time-steps

$$egin{aligned} p_{j,t}^{min} &= \max(p_{j,t}^{min} orall t) \ p_{j,t}^{max} &= \min(p_{j,t}^{max} orall t) \end{aligned}$$

Pros: Extremely fast and relatively successful.

Cons: Economically inefficient. In rare cases there were instances where $p_{j,t}^{min} > p_{j,t}^{max}$.

Approach 3: Reduced number of time-steps

Break the control horizon into a smaller number of steps

- Pick a time-step mapping (e.g. break the 48 time-steps into four groups)
- Create a set of decision variables for the reduced time-steps

 $egin{aligned} p_{j, au}^{min} &= \max(p_{j,t}^{min} orall t \in au) \quad ext{etc...} \ p_{j, au} &\leq p_{j, au-1} + \Delta \quad ext{etc...} \end{aligned}$

Pros: Economic improvements over single time-step.

Cons: Due to system variables v, θ it is not possible to cluster time-steps for each device. Therefore, it is hard to pick the best time-step mapping. Methods for finding the optimal time-steps would eat into available time.

• • = • • = •

Bonus: Speculation about where out mistakes might have been

- (1) Ignoring reserve products initially (and later only adding them in a heuristic way)
- 2 Two-stage linearized approach was less resilient without parallel computation
- 3 Line switching (?)
- 4 Throwing too much out energy constraints, contingencies