
Convex Relaxations and Integer Rounding Heuristics for the Grid Optimization Competition

Hassan Hijazi - GravityX INFORMS 2022

How it all started

Ten years ago..

How it all started

Ten years ago...

How it all started

Ten years ago..

If you had walked up to me

Thanks to ARPA-E, LANL, and PNNL

esp. Steve Elbert, Arun Veeramany and Jesse Holzer

Monarch of the Mountain

CHALLENGE 2: MONARCH OF THE MOUNTAIN

The Grid Optimization (GO) Competition Post Challenge 2 Event named Challenge 2: Monarch of the Mountain or Ch2-MoM, will focus on finding improved solutions to the security-constrained optimal power flow (SCOPF) problem introduced in Challenge 2.

Challenge 2 required competitors to solve SCOPF problems in a limited amount of time on a uniform High Performance Computing (HPC) system maintained and operated by the GO Administrator, Pacific Northwest National Laborabory.

Public datasets – No time limits – No hardware limits

Monarch of the Mountain

CHALLENGE 2: MONARCH OF THE MOUNTAIN

The Grid Optimization (GO) Competition Post Challenge 2 Event named Challenge 2: Monarch of the Mountain or Ch2-MoM, will focus on finding improved solutions to the security-constrained optimal power flow (SCOPF) problem introduced in Challenge 2.

Challenge 2 required competitors to solve SCOPF problems in a limited amount of time on a uniform High Performance Computing (HPC) system maintained and operated by the GO Administrator, Pacific Northwest National Laborabory.

Public datasets – No time limits – No hardware limits

We need fixed topologies!

Monarch of the Mountain

CHALLENGE 2: MONARCH OF THE MOUNTAIN

The Grid Optimization (GO) Competition Post Challenge 2 Event named Challenge 2: Monarch of the Mountain or Ch2-MoM, will focus on finding improved solutions to the security-constrained optimal power flow (SCOPF) problem introduced in Challenge 2.

Challenge 2 required competitors to solve SCOPF problems in a limited amount of time on a uniform High Performance Computing (HPC) system maintained and operated by the GO Administrator, Pacific Northwest National Laborabory.

Public datasets – No time limits – No hardware limits

84 instances:

\$5,000 if solution improves CH2 objective by 1%

\$5,000 if solution has been on the leaderboard the longest

Algorithm 1 Iterative Batch Rounding (IBR)

- 1: Group discrete variables into predefined batches \mathcal{B}_1 to \mathcal{B}_n .
- 2: Solve continuous relaxation of MINLP (1).
- 3: **for** $i \in \{1, ..., n\}$ **do**
- 4: Call the custom ROUND function on batch \mathcal{B}_i
- 5: Fix all rounded variables in batch \mathcal{B}_i
- 6: Solve the continuous relaxation of reduced MINLP (1).
- 7: end for
- One hour time limit vs unlimited
- n = 3 vs n = 8
- No contingencies added to the base case model vs one line contingency added.

Algorithm 1 Iterative Batch Rounding (IBR)

- 1: Group discrete variables into predefined batches \mathcal{B}_1 to \mathcal{B}_n .
- 2: Solve continuous relaxation of MINLP (1).
- 3: **for** $i \in \{1, ..., n\}$ **do**
- 4: Call the custom ROUND function on batch \mathcal{B}_i
- 5: Fix all rounded variables in batch \mathcal{B}_i
- 6: Solve the continuous relaxation of reduced MINLP (1).
- 7: end for
- One hour time limit vs unlimited
- n = 3 vs n = 8
- No contingencies added to the base case model vs one line contingency added.

Not enough! Beaten by VATech

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

Run IBR with one batch including binaries affecting line properties

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

Run IBR with one batch including binaries affecting line properties

Relax the power flow equations using second-order cone constraints

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

Run IBR with one batch including binaries affecting line properties

Relax the power flow equations using second-order cone constraints

Solve the MISOC (includes unit commitment binaries) using Gurobi

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

Run IBR with one batch including binaries affecting line properties

Relax the power flow equations using second-order cone constraints

Solve the MISOC (includes unit commitment binaries) using Gurobi

Fix the UC binaries and rerun IBR on the original MINLP

Solve the MISOC (includes unit commitment binaries) using Gurobi

Barrier solved model in 49 iterations and 6.52 seconds (6.52 work units) Optimal objective 4.14182236e+06

Root relaxation: objective 4.141822e+06, 0 iterations, 5.80 seconds (6.03 work units) Another try with MIP start

Nodes		Current Node					Ι	Objecti	Work			
Expl Unexpl		ĺ	Obj	Depth	In	tInf	Ĺ	Incumbent	BestBd	Gap	It/No	de Time
0	0	41	.41822	.36	0	111		- 41	41822.36	-	-	6s
0	0	41	.41456	.14	0	26		- 41	41456.14	-	-	16s
0	0	41	.41455	.80	0	20		- 41	41455.80	-	-	32s
0	0	41	.41446	.14	0	12		- 41	41446.14	-	-	40s
0	0	41	.41445	.04	0	18		- 41	41445.04	-	-	49s
0	0	41	41442	.17	0	78		- 41	41442.17	-	-	57s
0	0	41	41442	.17	0	10		- 41	41442.17	-	-	65s
0	0	41	41442	.17	0	18		- 41	41442.17	-	-	72s
0	2	41	41442	.17	0	16		- 41	41442.17	-	_	114s
1	4	41	41442	.17	1	18		- 41	41442.17	-	0.0	123s
3	8	41	41442	.17	2	16		- 41	41442.17	-	0.0	137s
7	16	41	.41442	.17	3	8		- 41	41442.17	-	0.0	163s

IBR heuristic vs IBR + a Mixed-Integer Second-Order Cone Relaxation

Run IBR with one batch including binaries affecting line properties

Relax the power flow equations using second-order cone constraints

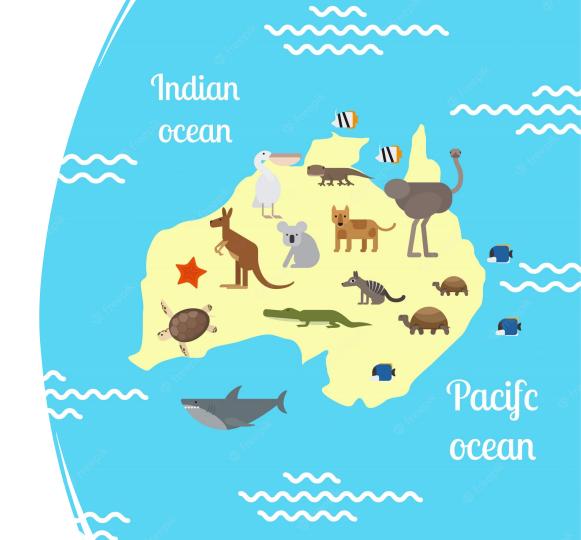
Run IBR on MISOC!

Solve the MISOC (includes unit commitment binaries) using Gurobi

Fix the UC binaries and rerun IBR on the original MINLP

Solve the MISOC (includes unit commitment binaries) using Gurobi

```
Barrier solved model in 49 iterations and 6.46 seconds (6.52 work units)
Optimal objective 4.14182236e+06


Root relaxation: objective 4.141822e+06, 0 iterations, 5.82 seconds (6.03 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 4141822.36 0 111 4141167.81 4141822.36 0.02% - 6s
```

Date	model	scenario	Best MSgain	Best Objective	Team, Source	% MSgain Improvement	Previous Best MSgain	Previous Best Team	Best Ch2 MSgain
8/9/2022	C2FEN02020	134	170,552	4,909,025	GOT-BSI-OPF, MoM	0.3790%	170,548	GravityX, MoM	169,908
8/2/2022	C2FEN02020	260	201,713	6,057,441	GOT-BSI-OPF, MoM	0.0536%	201,654	GravityX, MoM	201,605
8/9/2022	C2FEN02020	262	211,858	5,895,315	GOT-BSI-OPF, MoM	0.0345%	211,830	GravityX, MoM	211,785
8/7/2022	C2FEN02312	3	175,061	5,645,630	GravityX, MoM	1.0027%	174,993	GravityX, MoM	173,323
4/21/2022	C2FEN02312	18	168,358	5,101,496	GravityX, MoM	0.4786%	168,253	Gordian Knot, MoM	167,556
4/21/2022	C2FEN02312	21	203,245	4,720,343	GravityX, MoM	0.5755%	203,034	Gordian Knot, MoM	202,082
2/28/2022	C2FEN02312	40	237,659	7,545,722	Gordian Knot, MoM	0.6624%	237,546	Gordian Knot, MoM	236,095
2/28/2022	C2FEN02312	44	206,690	6,185,958	Gordian Knot, MoM	0.9146%	204,817	GravityX Div. 1-4	204,817
9/6/2022	C2FEN03288	9	258,547	16,793,530	GOT-BSI-OPF, MoM	0.0786%	258,457	GravityX, MoM	258,344
3/5/2022	C2FEN03288	29	232,432	9,430,817	GravityX, MoM	0.0400%	232,393	GravityX, MoM	232,339
9/6/2022	C2FEN03288	35	245,252	9,619,315	GOT-BSI-OPF, MoM	0.1016%	245,093	GravityX, MoM	245,003
3/6/2022	C2FEN03288	41	299,817	10,361,584	GravityX, MoM	0.0298%	299,806	GravityX, MoM	299,728
8/24/2022	C2FEN03288	43	248,528	9,203,026	GravityX, MoM	0.0568%	248,430	GravityX, MoM	248,387
5/4/2022	C2FEN03970	22	169,059	222,904	GravityX, MoM	0.1502%	168,805	NU_Columbia_Artelys Div. 3,4	168,805
9/6/2022	C2FEN03970	23	163,914	257,435	GOT-BSI-OPF, MoM	0.0623%	163,842	GravityX, MoM	163,812
8/25/2022	C2FEN04200	9	1,498,655	5,836,295	GravityX, MoM	0.1231%	1,497,031	GravityX, MoM	1,496,812
3/15/2022	C2FEN04200	10	1,503,282	6,098,130	GravityX, MoM	0.0229%	1,502,939	GravityX Div. 1-4	1,502,939

Thank you!

