
## GravityX

#### ARPA-E Grid Software Annual Meeting 2023

Hassan Hijazi



## Why a Competition?

Transparent unbiased evaluation

Equal treatment

Zero BS/faking

Off-the-chart motivation levels

## Challenge 3: The Hardest Challenge of them All



#### CHALLENGE 3

The Grid Optimization (GO) Competition Challenge 3 started on December 8, 2022, with the opening of Sandbox submissions of S0 datasets. It is not too late to enter. Win up to \$750,000. The first Event took place at the end of January 2023. The second Event took place in April 2023. The third Event is taking place in June 2023; the fourth and final Event will take place in early September 2023. Prizes will be awarded in Events 3 and 4.

Event 4 submissions are now CLOSED.

The Grid Optimization (GO) Competition Challenge 3, focuses on the security-constrained optimal power flow (SCOPF)





#### The Answer: Temporal Constraints

- Division 1: Real-Time Market with 8-hour look ahead -- 8 0.25-hour periods, 8 0.5-hour periods, 2 1-hour periods
- Division 2: Day-Ahead Market with 48-hour look ahead -- 48 1-hour periods
- Division 3: Week-Ahead Advisory with 7-day (168-hour) look ahead -- 42 4-hour periods.



#### Other Challenges:

- Le-8 Constraint Satisfaction (4 orders of magnitude drop!)
- Dense Reserve Constraints (thousands of nnz in one constraint)
- Different N-1 Post-Contingency Model

#### Most Importantly: Other Competitors

| C3E3N06717D1 | 46 | 1 | TIM-GO           | 156,932,909   | 577 | YongOptimization | 154,196,442   | 482   |
|--------------|----|---|------------------|---------------|-----|------------------|---------------|-------|
| C3E3N06717D1 | 47 | 1 | YongOptimization | 162,542,585   | 450 | TIM-GO           | 161,279,556   | 588   |
| C3E3N06717D1 | 48 | 1 | YongOptimization | 164,750,180   | 590 | TIM-GO           | 163,121,957   | 577   |
| C3E3N08316D1 | 1  | 1 | YongOptimization | 1,189,381,421 | 168 | TIM-GO           | 1,179,768,680 | 523   |
| C3E3N08316D2 | 1  | 1 | YongOptimization | 7,151,907,899 | 778 | TIM-GO           | 7,089,733,833 | 4,022 |

#### Most Importantly: Other Competitors

| C3E3N06717D1 | 46 | 1 | TIM-GO           | 156,932,909   | 577 | YongOptimization | 154,196,442   | 482   |
|--------------|----|---|------------------|---------------|-----|------------------|---------------|-------|
| C3E3N06717D1 | 47 | 1 | YongOptimization | 162,542,585   | 450 | TIM-GO           | 161,279,556   | 588   |
| C3E3N06717D1 | 48 | 1 | YongOptimization | 164,750,180   | 590 | TIM-GO           | 163,121,957   | 577   |
| C3E3N08316D1 | 1  | 1 | YongOptimization | 1,189,381,421 | 168 | TIM-GO           | 1,179,768,680 | 523   |
| C3E3N08316D2 | 1  | 1 | YongOptimization | 7,151,907,899 | 778 | TIM-GO           | 7,089,733,833 | 4,022 |

A mere \$9.6M in market surplus difference in the real-time market

#### Most Importantly: Other Competitors

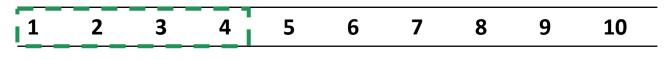
| C3E3N00617D2 | 1  | 1 | GravityX | 275,911,451 | 296 | YongOptimization | 275,864,132 | 241    |
|--------------|----|---|----------|-------------|-----|------------------|-------------|--------|
| C3E3N00617D3 | 1  | 1 | GravityX | 967,609,873 | 345 | The Blackouts    | 967,586,640 | 14,408 |
| C3E3N01576D1 | 27 | 1 | TIM-GO   | 100,953,249 | 381 | GOT-BSI-OPF      | 99,005,474  | 123    |
| C3E3N01576D2 | 27 | 1 | TIM-GO   | 564,297,765 | 861 | YongOptimization | 551,568,231 | 162    |

#### Most Importantly: Other Competitors

| C3E3N00617D2 | 1  | 1 | GravityX | 275,911,451 | 296 | YongOptimization | 275,864,132 | 241    |
|--------------|----|---|----------|-------------|-----|------------------|-------------|--------|
| C3E3N00617D3 | 1  | 1 | GravityX | 967,609,873 | 345 | The Blackouts    | 967,586,640 | 14,408 |
| C3E3N01576D1 | 27 | 1 | TIM-GO   | 100,953,249 | 381 | GOT-BSI-OPF      | 99,005,474  | 123    |
| C3E3N01576D2 | 27 | 1 | TIM-GO   | 564,297,765 | 861 | YongOptimization | 551,568,231 | 162    |

My guess:TIM-GO was already including contingencies in Event 3!

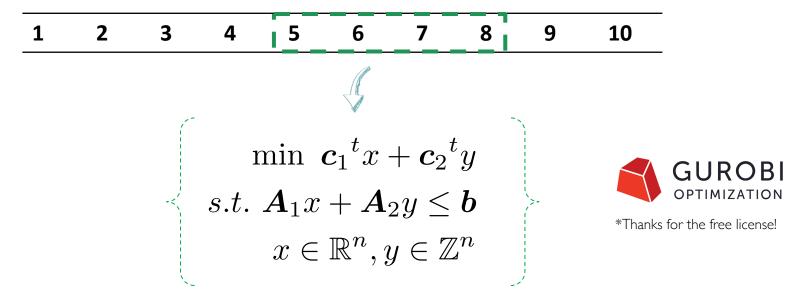
#### Most Importantly: Other Competitors


| C3E3N00617D2 | 1  | 1 | GravityX | 275,911,451 | 296 | YongOptimization | 275,864,132 | 241    |
|--------------|----|---|----------|-------------|-----|------------------|-------------|--------|
| C3E3N00617D3 | 1  | 1 | GravityX | 967,609,873 | 345 | The Blackouts    | 967,586,640 | 14,408 |
| C3E3N01576D1 | 27 | 1 | TIM-GO   | 100,953,249 | 381 | GOT-BSI-OPF      | 99,005,474  | 123    |
| C3E3N01576D2 | 27 | 1 | TIM-GO   | 564,297,765 | 861 | YongOptimization | 551,568,231 | 162    |

My guess:TIM-GO was already including contingencies in Event 3!

The Power of Competitions: Seeing is Believing!

## GravityX's Approach


Decomposition + MIP + NLP



Rolling Horizon Time Decomposition

## GravityX's Approach

#### Decomposition + MIP + NLP



From Lossless to Lossy Mixed-Integer Linear Power Flow Model (including reactive power)

#### Busting a few myths\*

$$\begin{split} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{fr}}) v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2) v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{to}}) v_{i't}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &+ b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2) v_{i't}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{split}$$

#### Busting a few myths\*

\* Another advantage of competitions

$$\begin{split} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}}((g_{j}^{\text{sr}} + g_{j}^{\text{fr}})v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- b_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}}((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2)v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- g_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}}((g_{j}^{\text{sr}} + g_{j}^{\text{to}})v_{i't}^{2} + (-g_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &+ b_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}}((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2)v_{i't}^{2} + (b_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{aligned}$$

Line resistance is always positive

#### Busting a few myths\*

```
\begin{split} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}}((g_{j}^{\text{sr}} + g_{j}^{\text{fr}})v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- b_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}}((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2)v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- g_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}}((g_{j}^{\text{sr}} + g_{j}^{\text{to}})v_{i't}^{2} + (-g_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &+ b_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}}((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2)v_{i't}^{2} + (b_{j}^{\text{sr}}\cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{j}^{\text{sr}}\sin(\theta_{it} - \theta_{i't} - \phi_{jt}))v_{it}v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{aligned}
```

- Line resistance is always positive
- DC (lossy/lossless) is good enough

#### Busting a few myths\*

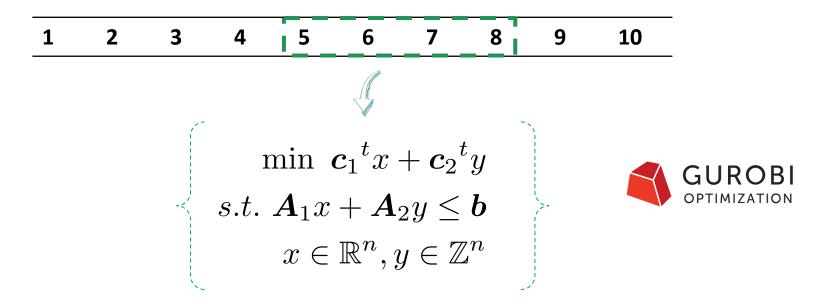
```
\begin{aligned} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{fr}}) v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2) v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{to}}) v_{i't}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &+ b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2) v_{i't}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{i}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{it}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{aligned}
```

- Line resistance is always positive
- DC (lossy/lossless) is good enough
- Susceptance is orders of magnitude larger than conductance |b| >> |g|

#### Busting a few myths\*

```
\begin{aligned} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{fr}}) v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &- b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2) v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &- g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{to}}) v_{i't}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2) v_{i't}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{i}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{aligned}
```

- Line resistance is always positive
- DC (lossy/lossless) is good enough
- Susceptance is orders of magnitude larger than conductance |b| >> |g|
- Convex conic relaxations can scale


#### Busting a few myths\*

```
\begin{split} p_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{fr}}) v_{it}^{2} / \tau_{jt}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{fr}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{fr}} - b_{j}^{\text{ch}} / 2) v_{it}^{2} / \tau_{jt}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &- g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ p_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((g_{j}^{\text{sr}} + g_{j}^{\text{to}}) v_{i't}^{2} + (-g_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt})) \\ &+ b_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \\ q_{jt}^{\text{to}} &= u_{jt}^{\text{on}} ((-b_{j}^{\text{sr}} - b_{j}^{\text{to}} - b_{j}^{\text{ch}} / 2) v_{i't}^{2} + (b_{j}^{\text{sr}} \cos(\theta_{it} - \theta_{i't} - \phi_{jt}) \\ &+ g_{j}^{\text{sr}} \sin(\theta_{it} - \theta_{i't} - \phi_{jt})) v_{it} v_{i't} / \tau_{jt}) \ \forall t \in T, j \in J^{\text{ac}}, i = i_{j}^{\text{fr}}, i' = i_{j}^{\text{to}} \end{split}
```

- Line resistance is always positive
- DC (lossy/lossless) is soil enough
- Task-ptunce is orders of magnitude larger than conductance |b| >> |g|
- Convex conic relaxations can scale

## How to include Voltage Variables in the MIP?

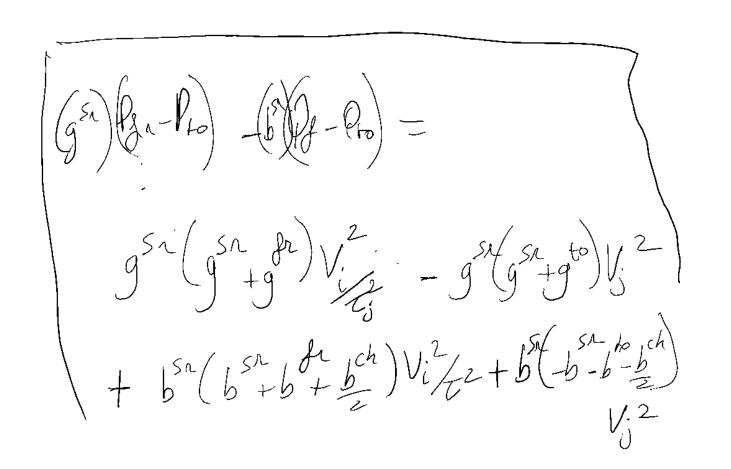
And still have Gurobi solve it in time...



From Lossless to Lossy Mixed-Integer Linear Power Flow Model (including reactive power)

## Linear Relationship Linking Voltage Magnitude Square to P and Q?

$$\frac{P_{h} - P_{ho} = (g^{3} + g^{h}) v_{g}^{2}}{2 + g^{5} + g^{h}} v_{g}^{2} - (g^{5} + g^{h}) v_{ho}^{2}}$$

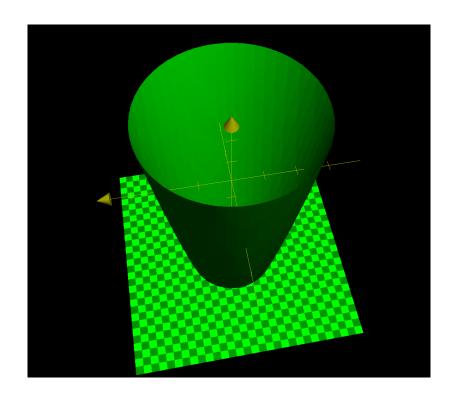

$$= 2 \frac{b^{5}}{b^{5}} \frac{\sin(\sigma_{i} - \sigma_{j} - \rho_{i}) v_{i} v_{j}}{2}$$

$$= 2 \frac{b^{5}}{b^{5}} \frac{\sin(\sigma_{i} - \sigma_{j} - \rho_{i}) v_{i} v_{j}}{2}$$

$$= -2 \frac{\sin(\sigma_{i} - \sigma_{j} - \rho_{i}) v_{i} v_{j}}{2}$$

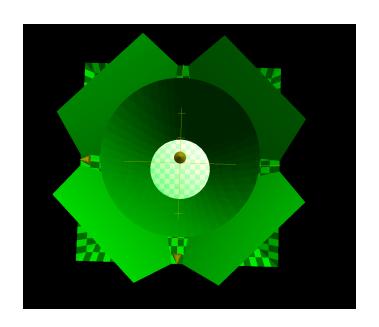
$$= -2 \frac{\sin(\sigma_{i} - \sigma_{j} - \rho_{i}) v_{i} v_{j}}{2}$$

## Linear Relationship Linking Voltage Magnitude Square to P and Q?




### Modeling Thermal Limit Constraints

#### Outer-Approximation Cuts using Gurobi's Lazy Callback


$$\left( \left( p_{jt}^{\text{fr}} \right)^2 + \left( q_{jt}^{\text{fr}} \right)^2 \right)^{1/2} \le s_j^{\text{max}} + s_{jt}^+ \ \forall t \in T, j \in J^{\text{ac}}$$

$$\left( \left( p_{jt}^{\text{to}} \right)^2 + \left( q_{jt}^{\text{to}} \right)^2 \right)^{1/2} \le s_j^{\text{max}} + s_{jt}^+ \ \forall t \in T, j \in J^{\text{ac}}$$



## Modeling Thermal Limit Constraints

#### Outer-Approximation Cuts using Gurobi's Lazy Callback



$$\nabla_x f_j(\hat{x})^{\mathrm{T}}[x-\hat{x}] \leq 0 \quad \forall i = \{1, \dots m\}$$

## GravityX's Approach Decomposition + MIP + NLP

- Run ACOPF with unit commitment fixed to previous operating point
- Set rolling horizon length and heuristically decide which contingency to include
- Run rolling horizon MIP
- Fix all unit commitment binaries
- Run rolling horizon NLP

## Taking Advantage of Parallelism (access to 64 threads)

6 Parallel workers (10 threads each)

```
/* Worker 0: no mip, slack, reserve */
/* Worker 1: 1 mip, slack, reserve */
/* Worker 2: mip, no slack, no reserve */
/* Worker 3: mip, slack, reserve, 1 step horizon */
/* Worker 4: mip, tuned */
/* Worker 5: mip, slack, reserve, LineSW or full horizon */
```

## Taking Advantage of Parallelism (access to 64 threads) 6 Parallel workers (10 threads each)

#### Network Instance: C3S3N08316D2

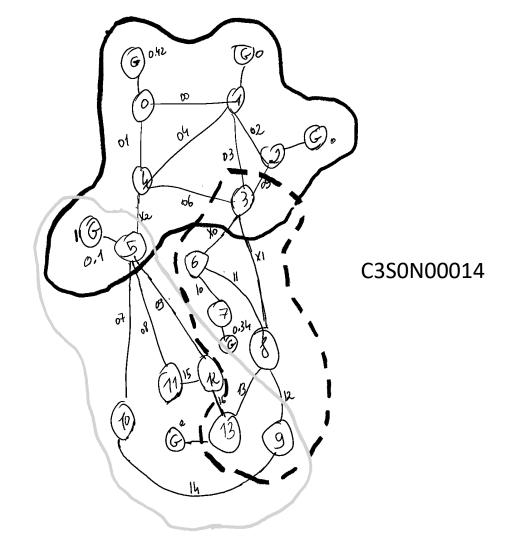
| Worker 0    | Worker 1    | Worker 2    | Worker 3    | Worker 4    | Worker 5 |
|-------------|-------------|-------------|-------------|-------------|----------|
| \$7,062.28M | \$7,115.62M | \$7,093.97M | \$6,166.02M | \$4,027.52M | FAILED   |

```
/* Worker 0: no mip, slack, reserve */
/* Worker 1: 1 mip, slack, reserve */
/* Worker 2: mip, no slack, no reserve */
/* Worker 3: mip, slack, reserve, 1 step horizon */
/* Worker 4: mip, tuned */
/* Worker 5: mip, slack, reserve, LineSW or full horizon */
```

# Taking Advantage of Parallelism (access to 64 threads) 6 Parallel workers (10 threads each)

Network Instance: C3S3N08316D2

| Worker 0    | Worker 1    | Worker 2    | Worker 3    | Worker 4    | Worker 5 |
|-------------|-------------|-------------|-------------|-------------|----------|
| \$7,062.28M | \$7,115.62M | \$7,093.97M | \$6,166.02M | \$4,027.52M | Time Out |


Network Instance: C3S4N00617D1

14 lines switched ON!



Things I started but did not have time to finish:

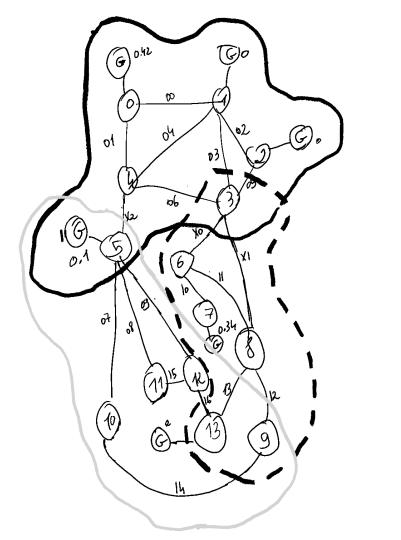
1) Spatial Decomposition



Things I started but did not have time to finish:

1) Spatial Decomposition

2) Dynamic Contingency ConstraintGeneration

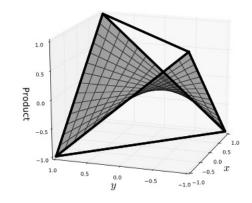


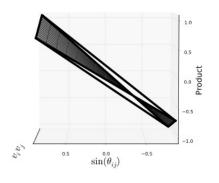

Things I started but did not have time to finish:

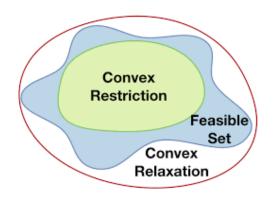
1) Spatial Decomposition

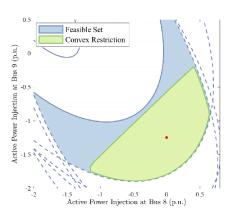
2) Dynamic Contingency ConstraintGeneration

3) Project the slack variables and use on/off constraints for line switching





Things I tried that miserably failed:


1) Conic Relaxations




3) Rounding Heuristics









D. Lee et al. "Convex Restriction of Power Flow Feasibility Sets," in *IEEE Transactions on Control of Network Systems*, vol. 6, no. 3, pp. 1235-1245, Sept. 2019

#### Thanks!

"Competition is a lot like cod liver oil. First it makes you sick. Then it makes you better." - Unattributed

"If you can't win, make the fellow ahead of you break the record." - EVAN ESAR

"It is in vain for us to devise schemes by which competition can be put out of civilized life. Competition is the condition of life." - LYMAN ABBOTT

"The ultimate victory in competition is derived from the inner satisfaction of knowing that you have done your best and that you have gotten the most out of what you had to give" - Howard Cosell