GravitySDP: A Solver for Sparse Mixed-Integer Semidefinite Programming

Smitha Gopinath and Hassan Hijazi

Los Alamos National Laboratory

INFORMS 23

The story begins in 2018

SDP relaxation for the ACOPF

	Full-SDF	? (Mosek)	Sparse-SD	DP (Mosek)	Sparse-SDP (SDPT3)		3D-Deterr	ninant Cuts (Ipopt)	
Instance	Gap	Time	Gap	Time	Gap	Time	Gap	Time	
5_pjm	5.2%	0.0	5.2%	0.1	5.22%	0.66	5.22%	0.04	
118_ieee	ERR	319.1	0.2%	1.3	0.18%	3.50	0.20%	0.84	
162_ieee_dtc	М	EM	2.4%	8.5	2.26%	10.70	2.36%	5.48	
240_pserc	MEM		2.3%	3.5	ERR	ERR	2.30%	4.39	
300_ieee	М	EM	0.4%	5.4	0.11%	6.80	0.14%	2.09	
3_lmbdapi	5.0%	0.0	5.0%	0.0	7.34%	0.50	4.99%	0.02	
24_ieee_rtsapi	ERR	ERR	ERR	ERR	2.06%	1.20	2.09%	0.06	
30_asapi	ERR	ERR	ERR	ERR	ERR	ERR	7.18%	0.11	
30_fsrapi	0.3%	2.9	0.3%	0.2	0.28%	1.20	0.81%	0.11	
39_epriapi	0.2%	11.6	0.3%	0.3	0.18%	1.30	0.22%	0.19	
73_ieee_rtsapi	ERR	ERR	ERR	ERR	2.91%	2.60	2.97%	0.28	
89_pegaseapi	ERR	ERR	ERR	ERR	6.88%	5.40	6.96%	8.03	
118_ieeeapi	ERR	ERR	11.2%	1.4	11.14%	4.60	11.78%	0.85	
162_ieee_dtcapi	М	EM	1.7%	8.7	1.71%	10.70	1.81%	6.89	
24_ieee_rtssad	ERR	ERR	ERR	ERR	4.36%	1.30	2.53%	0.06	
57_ieeesad	0.1%	40.9	0.1%	0.6	0.16%	1.20	0.15%	0.17	
73_ieee_rtssad	ERR	ERR	ERR	ERR	2.75%	1.90	1.58%	0.31	
118_ieeesad	ERR	ERR	3.7%	1.4	5.45%	3.90	3.93%	0.72	
162_ieee_dtcsad	MEM		2.4%	8.7	2.67%	10.70	2.4%	10.00	
240_psercsad	MEM		ERR	ERR	ERR	ERR	4.25%	9.07	
300_ieeesad	MEM		0.8%	5.4	0.12%	7.80	0.13%	2.22	

Time in

seconds

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{bmatrix} \ge 0$$

positive semidefinite = all principal minors are non-negative

$$k = 1, \ x_{ii} \ge 0, \ i \in \{1, 2, 3\}$$

$$k = 1, \ x_{ii} \ge 0, \ i \in \{1, 2, 3\}$$
$$k = 2, \ x_{ii}x_{jj} \ge x_{ij}^2, \ (i, j) \in \{(1, 2), (1, 3), (2, 3)\}$$

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{bmatrix} \ge 0$$

$$k = 1, \ x_{ii} \ge 0, \ i \in \{1, 2, 3\}$$
$$k = 2, \ x_{ii}x_{jj} \ge x_{ij}^2, \ (i, j) \in \{(1, 2), (1, 3), (2, 3)\}$$
$$k = 3, \ 2x_{12}x_{23}x_{13} + x_{11}x_{22}x_{33} \ge x_{12}^2x_{33} + x_{13}^2x_{22} + x_{23}^2x_{11}$$

SDP: Geometric Intuition

Feasible region after fixing diagonal elements to one

SDP: Geometric Intuition

Non-convex constraints defining a convex region

After adding the 2x2 submatrix determinant constraints

SDP: Geometric Intuition Can we generate Outer-Approximation Cuts?

Should also work in higher dimensions*

SDP: Geometric Intuition Can we generate Outer-Approximation Cuts?

Should also work in higher dimensions*

* might need an exponential number of cuts. [Braun et al. 2015].

Chordal Graphs To The Rescue

A Graph is chordal if every cycle of length ≥ 4 has a chord

Chordal Graphs To The Rescue

A Graph is chordal if every cycle of length ≥ 4 has a chord

Max-Clique Decomposition of Chordal Graphs

Grone et al. 1984

$X \geq 0 \equiv X_{\mathcal{C}_i} \geq 0$, for all max-cliques $\mathcal{C}_i \in G$

Max-Clique Decomposition of Chordal Graphs

Grone et al. 1984

$X \geq 0 \equiv X_{\mathcal{C}_i} \geq 0$, for all max-cliques $\mathcal{C}_i \in G$

Intuition behind theorem: No cyclic relationship

$$(x_1 - x_2) + (x_2 - x_3) + (x_3 - x_1) = 0$$

Fast Forward to 2022 ..

Fast Forward to 2022 ..

A few months later ..

GravitySDP

https://github.com/coin-or/Gravity/tree/GravitySDP

Mathematical Modeling for Optimization and Machine Learning

17

Uses Eigen

Uses Eigen

Automatic Sparsity Detection + Chordal Graph Completion + Max Clique Generation + Auxiliary Variable Projection

Auxiliary Variable Projection

Ties to Cplex and Gurobi

Numerical Experiments

Truss Structure Optimization

(d) Solution with Euler buckling constraints. $W^* = 627.89 \,\mathrm{kg}$.

		Gravity	SDP	Gravi	tySDP (no ro	ot refine).		SCIPSDP	
Instance	objective	relaxation bound	time (seconds)	objective	relaxation bound	time (seconds)	objective	relaxation bound	time (seconds)
2x5-1scen-12bars	3.51	3.51	350	3.51	3.51	2180	3.51	3.51	233
2x5-2scen-3bars	7.33	7.33	13	7.33	7.33	12	7.33	7.33	48
2x5-2scen-4bars	6.66	6.66	14	6.66	6.66	22	6.66	6.66	83
2x5-3bars	4.79	4.79	32	4.79	4.79	4	4.79	4.79	21
2x6-3bars	6.20	6.20	81	6.20	6.20	27	6.20	6.20	151
2x7-3bars	8.35	8.35	385	8.35	8.35	402	8.35	8.35	1286
3x3-2bars-3scen	33.91	33.91	6	33.91	33.91	11	33.91	33.91	35
3x3-2fixed-8bars	2.56	2.56	23	2.56	2.56	26	2.56	2.56	6
3x3-2scen-6bars	7.86	7.86	28	7.86	7.86	91	7.86	7.86	61
3x3-2scen-8bars	7.74	7.74	28	7.74	7.74	68	7.74	7.74	49
4x5-2bars	6.16	6.16	120	6.16	6.16	22	6.16	6.16	2054
3x3-2scen-small-rob	2.81	2.81	30	2.81	2.81	27	2.81	2.81	52
3x3-3scen-8bars	0.69	0.69	95	0.69	0.69	119	0.69	0.69	102
3x3-5bars-2scen	4.03	4.03	6	4.03	4.03	23	4.03	4.03	8
3x4-1scen-6bars	0.77	0.77	197	0.77	0.77	41	0.77	0.77	90
3x4-1scen-8bars	0.60	0.60	27	0.60	0.60	126	0.60	0.60	22
3x4-2 fixed - 4 bars-nominal	7.18	7.18	24	7.18	7.18	644	7.18	7.18	20
4x3-2bars-3scen	32.21	32.21	166	32.21	32.21	794	32.21	32.21	273
4x4-1bar-2scen	12.16	12.16	1731	12.16	12.16	2759	12.16	10.44	10800
5x5-1bar	8.12	8.12	3420	8.12	8.12	1423	8.12	8.12	7191
bridge-2x5-5bars	2.50	2.50	12	2.50	2.50	29	2.50	2.50	9
2x3-3bars	2.12	2.12	1	2.12	2.12	0	2.12	2.12	1
bridge-2x6-4bars-2scen	6.60	6.60	113	6.60	6.60	207	6.60	6.60	888
bridge-2x7-4bars	9.68	9.68	13	9.68	9.68	87	9.72	9.72	7
bridge-2x8-2bars-2scen	5.31	5.31	954	5.31	5.31	1448	5.31	5.31	814
		-	•	•					

		GravitySE	OP	Gravity	/SDP (no root	refine).		SCIPSDP	
bridge-2x8-2bars-2scen	5.31	5.31	954	5.31	5.31	1448	5.31	5.31	814
bridge-2x9-2bars-nominal	5.69	5.69	2155	5.69	5.69	4049	5.69	5.69	352
bridge-2x9-2bars	4.66	4.66	5723	4.66	4.61	10801	4.66	4.66	816
bridge-2x10-2bars-2scen	7.09	6.73	10826	7.25	6.38	10802	7.29	6.77	10800
bridge-3x5-4bars-nominal	4.28	4.28	11	4.28	4.28	140	4.28	4.28	2
bridge-3x5-4bars	9.07	9.01	10808	9.07	9.00	10803	-	-	Error
bridge-3x7-2bars-nominal	7.46	7.46	6735	8.66	2.92	10802	7.46	7.46	503
bridge-3x7-2bars	10.15	10.15	548	10.07	3.49	10803	10.15	10.15	49
2x4-2scen-3bars	5.33	5.33	8	5.33	5.33	6	5.33	5.33	36
bridge-3x8-1bar-2scen	-	12.88	10861	-	5.04	10801	18.45	18.45	178
bridge-3x9-2bars	-	6.83	10895	-	2.78	10803	14.50	14.49	10800
demonst-1bar-3scen	22.81	22.81	1081	22.81	22.81	486	22.81	21.33	10800
demonst-2bars-2scen	10.13	10.13	95	10.13	10.13	97	10.13	10.13	4481
demonstsmall-1bar-4scen	18.49	18.49	5	18.49	18.49	7	18.49	18.49	51
demonstsmall-2bar-3scen	3.58	3.58	3	3.58	3.58	2	3.58	3.58	27
demonstsmall-2bars-2scen	7.30	7.30	3	7.30	7.30	7	7.30	7.30	41
demonstsmall-5bar-1scen-nominal	0.97	0.97	2	0.97	0.97	0	0.97	0.97	1
test-bridge2	6.89	6.89	16	6.89	6.89	67	6.89	6.89	108
test-bridge3	4.59	4.59	15	4.59	4.59	13	4.59	4.59	25
2x4-2scen-6bars	3.97	3.97	10	3.97	3.97	16	3.97	3.97	15
2x4-3bars-nominal	3.83	3.83	3	3.83	3.83	1	3.83	3.83	8
2x4-3bars	3.08	3.08	2	3.08	3.08	1	3.08	3.08	3
2x4-8bars-2scen	2.03	2.03	25	2.03	2.03	15	2.03	2.03	94
2x4-16bars	0.62	0.62	4	0.62	0.62	17	0.62	0.62	13
2x5-1scen-6bars	3.73	3.73	132	3.73	3.73	754	3.73	3.73	166

Geometric	Mean	 	
Method	 ا	Time (secs)	I
GravitySDP GravitySDP (no SCIPSDP	root refine) 	75 103 133	

-	Geometric Mean	_	 I	
_				
	Method		Time (secs)	
		_		
	GravitySDP		75	
	GravitySDP (no root refine)		103	
	SCIPSDP		133	
	Best		35	
		_		

Numerical Experiments

Algebraic Connectivity

Algebraic connectivity can measure how weakly any subset of vertices is connected to the remaining graph:

- Minimize latency in communicating data/information across the network
- Bottlenecks can only occur at higher data rates and robustness to node and link failures

Numerical Experiments

10x improvement in runtime, closed 6 open instances.

Main advantages:

- projected SDP cuts
- Multi-threaded cut generation

Thank you! <u>https://lanl-ansi.github.io/</u>

