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1 Introduction

This paper describes the solvers developed by entrants in the Grid Optimiza-
tion (GO) Competition Challenge 3. The Grid Optimization Competition is
run by a team of researchers from a number of organizations, including the
sponsor Advanced Research Projects Agency - Energy (ARPA-E), lead orga-
nization Pacific Northwest National Laboratory (PNNL), and technical con-
tributors from Los Alamos National Laboratory (LANL), National Renewable
Energy Laboratory (NREL), Texas A&M University (TAMU), Georgia Insti-
tute of Technology (GT), University of Wisconsin (UW), and others. The GO
Competition poses challenge problems in the field of power grid management,
invites entrants to develop solvers for these problems, invokes the solvers on a
set of problem instances using common hardware, ranks the solvers according
to their performance, and awards prizes according to the rankings. The overall
goal of the GO Competition is to spur innovative research on high impact and
computationally challenging problems in power grid management from initial
development through commercial deployment.

The GO Competition has run three challenges. This paper covers Challenge
3. The main objective of the paper is to describe the solution methods developed
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by the entrants and the competition organizers and to analyze the performance
of these different solvers. In section 2, we describe the Challenge 3 problem. In
section 3, we review the literature relevant to this problem. In section 4, we
give a condensed formulation of the problem. In section 5, we review traditional
solution approaches. In section 6, we describe the approaches of the competition
entrants. In section 7, we present some results of the competition. In section 8,
we offer conclusions.

2 Problem Description

In this section, we describe the GO Competition Challenge 3 problem at a high
level and explain our motivation for including certain features.

In an uncertain era, the evolutiotn of power systems through the integration
of renewable energy sources and the deployment of advanced smart grid tech-
nologies poses a complex challenge. The GO Competition Challenge 3 problem
is at the heart of this transformation, focusing on the optimization of short-term
planning in electrical power systems that must now deal with the unpredictable
and uncontrollable nature of renewable energy. This challenge highlights an
important aspect of modern power systems: as we get closer to execution time,
the accuracy of resource availability and weather forecasts improves dramati-
cally, providing a critical opportunity to refine unit commitment strategies in
real time.

Our research focuses on the efforts to integrate renewable energy into the
grid, recognizing its environmental benefits despite its intermittent and non-
controllable nature. By focusing on the transmission level and involving a large
network of suppliers and consumers, we advocate for a comprehensive manage-
ment approach that not only addresses immediate operational needs but also
anticipates the changing landscape of energy generation and consumption.

The Grid Optimization challenge we investigate is intended to maximize ef-
ficiency and market surplus while taking into account the stochastic nature of
renewable resources and the increasing accuracy of forecasts. This problem,
traditionally referred to as an alternating current (AC) security-constrained
(SC) unit commitment (UC) problem, becomes more complex as renewables
are integrated. However, advances in forecasting technologies provide a distinct
advantage; as the execution date approaches, improved precision in predicting
resource availability and weather conditions can be seamlessly integrated into
unit commitment decisions. This adaptive approach enables more accurate plan-
ning by optimizing generator startup/shutdown and power dispatch processes
to account for the real-time characteristics of renewable energy sources.

Our contribution on this subject is focused on innovative analytics and
methodologies that exploit the improving accuracy of forecasts to navigate the
integration challenges of renewable energy and smart grid technologies. High-
lighting strategies that dynamically adjust to the enhanced forecast precision
by real-time UC decisions, our work aims to showcase how power systems can
achieve resilience, competence, and sustainability. By embracing the temporal



improvement in data accuracy, we propose solutions that not only ensure the
stability and reliability of the grid but also secure the way for a more sustainable
energy future.

The GO Competition Challenge 3 problem is an optimization problem for
short term planning of an electrical power system with special model features
intended to reflect the future needs of grid planners in a rapidly changing electric
power sector. We consider the power system at the transmission level, with
suppliers such as generators, and consumers such as local utilities and large
industrial facilities, all connected by a network of transmission lines. In the
overall application of short term planning, we are focused on decisions that
might be made several minutes to several days ahead of time, mainly which
generators to start up or shut down how much power to dispatch from each
one, but we also consider decisions such as load dispatch and line switching
that might become more salient in a future power grid. By casting the problem
as an optimization problem, we are looking for a plan that is the best among
all possible plans according to a defined objective such as the total cost of
generation. More generally, we consider dispatchable load, so we also include
the total value of load served, and therefore we optimize the total market surplus.

This problem would traditionally be called an alternating current (AC) se-
curity constrained (SC) unit commitment (UC) problem. UC means we are
considering the commitment of generating units through discrete decisions on
startup and shutdown as well as their dispatch through continuous decisions
on real power output. AC modeling covers the dispatch, flow, and balance of
reactive power in addition to real power, along with voltage magnitude. SCs are
constraints that ensure the planned operating point stays within safe operating
limits in normal conditions and credible outage contingencies.

We consider a UC problem in a typical multi-period context, with discrete
time intervals covering a planning horizon of a few hours up to ten or more
days. We specifically identify three applications based on the time horizon. A
24 to 48 hour horizon with 15 minute to 2 hour time intervals is used for the day
ahead planning context common in wholesale electricity markets. A 4 to 8 hour
horizon with 15 minute to 1 hour time intervals is used for the near real time
look ahead context where, for example, additional resources are brought online
to handle revised forecasts of wind and solar output. A 5 to 10 day horizon
with 1 hour to 6 hour intervals is used for a week ahead planning process that
might be used especially to prepare for severe weather events.

In UC, the discrete decisions of generator startup and shutdown are modeled
with binary variables, so UC is a problem of mixed integer programming (MIP).
As a MIP problem UC is NP hard. This implies that solution algorithms can
take too long to reach a solution with a proof of optimality within a prescribed
tolerance. The practical performance of modern MIP solvers on UC is typically
much better than the theoretical worst case, but there is no guarantee of solver
performance, and long run times can and sometimes do happen. This poses an
ongoing challenge for UC applications.

AC means we consider not only the real power output of generators and
the physics of real power balance and flow but also reactive power and voltage



constraints. AC modeling is typically not used in short term planning in current
practice, but there is reason to believe it can permit more efficient use of gen-
eration and transmission resources in the current grid and that it may become
more important as the power grid evolves.

In general, after commitment and dispatch decisions are made, the state of
the power grid is realized and follows physical laws of AC power flow and bal-
ance. These physical laws are formulated as nonlinear equations in the variables
of device-level real and reactive power and bus-level voltage magnitude and an-
gle. As an optimization problem, the optimal dispatch of generators and loads
(even fixed loads) subject to AC physics is a nonconvex nonlinear programming
(NLP) problem. In terms of computational difficulty this problem is NP-hard.

Without the physical laws of AC power flow and balance, it is not possi-
ble to model the bus voltage magnitudes and reactive power capabilities and
requirements of devices. In particular the DC power flow and balance model
typically used in UC and economic dispatch models in power grid operational
planning at the time scales we consider here cannot model voltage and reactive
power. In practice, when a dispatch solution obtained from a DC model is im-
plemented, the resulting bus voltages may violate engineering limits, and real
time control mechanisms keep the voltages in acceptable ranges. These control
mechanisms depend on the reactive power and other capabilities and require-
ments of devices such as generators, shunts, and loads. If these capabilities
are used to their limits, then the real time controls will no longer be able to
maintain voltages within the desired ranges, and damage to grid equipment and
cascading grid failure can result. If reactive power and voltage were considered
at the dispatch planning stage by incorporating AC power flow and balance in
the UC and economic dispatch models, then the likelihood of this failure mode
could be decreased. In particular, additional generators might be committed
in order to make their reactive power capability available. Furthermore, with
reactive power capability characteristics (for example D-curves), the real power
dispatch might be modified in order to enable any given device to provide more
reactive power.

In the past, it has been unnecessary to consider voltage and reactive power
at the dispatch planning stage because it has been possible to ensure sufficient
reactive power capability mostly by relying on static reactive power infrastruc-
ture such as shunts but also by applying special constraints to ensure certain
generators are committed in thoroughly studied and well understood situations
of voltage stress and by generally applying conservative flow limits to transmis-
sion lines. We believe that changes underway in the electric power industry will
pose a challenge to this method of handling voltage and reactive power after
planning the real power dispatch. Specifically, the geographical and temporal
variability of wind and solar power and the load flexibility that might be needed
to manage this variability will lead to a much greater diversity of dispatch con-
ditions and operating points, so that fixed infrastructure and deep offline study
of all credible voltage stress scenarios will no longer be practical. Furthermore,
even in the current power grid, AC modeling will permit the use of less conser-
vative flow limits on transmission lines allowing in turn more efficient dispatch



and commitment decisions.

Therefore, we include a full AC power flow and balance model at each time
step of the UC model. In terms of theoretical computational complexity, UC
and ACOPF are already hard problems on their own, and combining them does
not change this theoretical complexity. However, UC and ACOPF on their own
can each be modeled and solved with solver software at a high level of commer-
cial and academic maturity. Commercial solvers for MIP have benefited from
decades of intense development spurred by high value applications throughout
modern society, and mature and robust NLP solvers are also available. Prac-
tical instances of UC and ACOPF can be solved in this way with reasonable
performance. Solvers for the combined MINLP problem are at an early stage
of development, so that modeling a combined UC-AC problem in a straight-
forward fashion and passing the model to a general purpose MINLP solver is
not successful on any but the smallest problem instances. With this increased
practical difficulty, in addition to the theoretical complexity, this problem fits
the ARPA-E model of spurring research on the hardest problems.

SC refers to a wide variety of constraints ensuring not only that the dispatch
plan is consistent with physical laws of electricity but also that the resulting
system state remains within safe operating limits established by engineering
practice. In the UC context, SCs can be viewed narrowly as the constraints
ensuring that power flows on transmission lines do not exceed predetermined
limits either in the base case when the network equipment is all in operation or
in any of a set of credible contingencies each defined by the unplanned outage
of one or more pieces of transmission equipment.

More generally, the concept of security to credible contingencies also requires
that we consider the unplanned outage of generation equipment, and our model
handles this in the traditional way by requiring reserves of generation capacity
that could be called up in case of a generator outage to replace the power that
was being provided by that outaged generator. Furthermore, the concept of safe
operation requires that we consider voltage limits with AC modeling. Finally,
for simplicity, our post-contingency model for line outage contingencies is a real
power only model and thus cannot resolve post-contingency bus voltages, so we
introduce reactive power reserve requirements to ensure that safe voltages can
be maintained in a contingency.

The future power grid is expected to be more reliant on wind and solar,
which are attractive for their near zero incremental energy cost and greenhouse
gas emissions but that also have high variability in available power output.
Therefore, it is anticipated that dispatchable load will be critical to maintaining
the balance of energy supply and demand at all times. Furthermore, some of the
types of loads that are likely to have the most potential for dispatchability are
large industrial plants, such as metallurgical smelters, cement manufacturers,
chemical processors and refiners, and even carbon capture and sequestration
equipment. Such loads may have significant operational complexity analogous
to the startup, shutdown, and minimum uptime and downtime constraints of
generators that are familiar in UC.

We therefore model dispatchable loads with all the same features as genera-



tors. From the standpoint of computational complexity and practical algorith-
mic performance, the main dimensions determining the computational difficulty
of a UC problem are the number of generators and the number of time intervals.
Therefore, this model feature reflecting a future user need might transform a
fairly difficult but reasonable UC problem of 1000 generators and 24 or 48 time
intervals into an enormously difficult problem of 5000 generator-like producing
and consuming devices.

A further implication of the increasing reliance on wind and solar is that the
topology of the power grid may need to be changed frequently in response to
weather conditions in order to take best advantage of the available wind and
solar energy. The greater diversity of dispatch conditions caused by the vari-
ability of wind and solar means that some lines should be switched (i.e. either
connected or disconnected) in order to permit more power flow overall. We
therefore include a decision variable to open or close each line in the network
at each time step. In current practice, lines are typically not opened or closed
due to day ahead or week ahead planning, and intense offline study is required
to ensure that such topology switching actions can be performed without ad-
versely affecting the dynamic state of the grid. We believe that much of the
line switching analysis could be brought into the daily and weekly planning pro-
cesses. Our competition takes a step towards doing that by including topology
switching in the formulation to investigate the value that topology optimization
could provide.

3 Literature Survey

The GO Challenge 3 delves into the complexities of power systems, where Unit
Commitment (UC) and AC Optimal Power Flow (OPF) represent critical yet
distinct aspects of modern electricity management. While UC primarily uses
convexified (typically linear) power flow equations to schedule generation units,
AC OPF typically operates with predetermined generation commitments. These
topics are tailored to their unique characteristics and constraints, recognizing
that the territory we explore has not been extensively charted in previous re-
search.

The evolution of UC has been marked by a significant shift from deter-
ministic to dynamic models, which corresponds to the complexities of evolving
electricity markets and grid infrastructures. In its early stages, UC relied heav-
ily on traditional methods such as Priority-List, Dynamic Programming, and
Lagrangian Relaxation to optimize the scheduling of generation units. These
methods, which were fundamental in their inception, were investigated in early
studies [9]. As renewable energy sources became more prevalent in the energy
sector, UC was forced to adapt, resulting in the development of stochastic and
robust models capable of dealing with the new layers of variability and uncer-
tainty [3]. This time period also saw the introduction of advanced optimization
techniques, particularly Mixed-Integer Linear Programming (MILP), which sig-
naled the beginning of a new era in UC research focused on improving solution



accuracy and efficiency [13]. Researchers developed decomposition and hybrid
methods, such as Benders Decomposition [8], to deal with the growing scale of
UC problems. Recent emphasis has been placed on integrating renewable en-
ergy, demand response, and storage, indicating a shift toward more sustainable
power systems [11] Theoretical advances in UC have been matched by advances
in specialized software and tools, such as MATPOWER, which have significantly
improved computational efficiency and practical application [14]. According to
recent IEEE publications [12], the current trajectory of UC research is firmly
oriented towards real-time algorithm development.

The journey in the field of ACOPF began with a focus on formulating and
solving nonlinear optimization problems to minimize generation costs while ad-
hering to operational constraints, laying the groundwork for future research
[5]. Researchers shifted their focus to developing more efficient and robust so-
lutions to address the nonlinearity, nonconvexity, and complexity inherent in
power system models as computing power improved [1]. The incorporation of
uncertainty and variability, largely driven by the growing influence of renewable
energy sources, was a critical moment in ACOPF research. As emphasized in [4],
robust optimization techniques were required to ensure resilient power system
operations. Power market deregulation and restructuring further complicated
the ACOPF landscape, bringing market dynamics to the forefront of OPF for-
mulations and solutions [2]. Recent studies have incorporated renewable energy
and demand response into ACOPF models to keep up with the evolving power
grid [7]. Along with theoretical advances, computational advances have signif-
icantly improved the scalability and efficiency of ACOPF solutions [6]. The
domain is now on the verge of a new era, with machine learning and artificial
intelligence increasingly being used to augment the predictive and optimization
capabilities of ACOPF models, indicating a promising future [10].

As a result, our investigation in this study contributes these two critical
areas of power systems - UC and ACOPF - with a recognition of their distinct
yet interconnected nature. We hope to deepen a more nuanced understanding
of modern power systems by addressing these issues separately but within a
unified framework, guided by historical context and driven by advancements
and future potential in these fields.

4 Problem Formulation

This section gives an abbreviated formulation of the model solved by the GO
Competition. The fully detailed formulation used by the GO Competition,
which we refer to here as the full formulation, is given in https://gocompetition.energy.gov.
Here we use complex numbers for compact expression of AC power flow. /—1
is the imaginary unit, and z* denotes the complex conjugate of z. We also use
the indicator function notation 1z denoting the value 1 if Z is true and 0 else.



4.1 Sets and indices

The network consists of buses ¢ € I and grid-connected devices j € J. The
set of devices is partitioned into producing devices JP", consuming devices J°,
shunt devices J*", AC branches J%¢, and DC branches J%. The time horizon
consists of time intervals t € T. We consider security contingencies k € K.

4.2 State variables and complex coordinates

For each bus ¢ and time ¢, the voltage magnitude and angle and complex voltage
are denoted by v;, 6+, and w;;, and the net real, reactive, and complex power
imbalance are denoted by p;t, g;+, and s;;. These variables are related by

wir = vyt (cos Oy + V—1sinb;) Vie I,teT (1)
sit =pi+V—lgu Viel,teT (2)

The real, reactive, and complex power injection of a producer device or with-
drawal of a consumer device or shunt j at time ¢ at the connection bus i; are
denoted by pj:, g;j¢, and s;; and are related by

sjt = pjr +V—1q;; Vj € Jeh e T (3)

The real, reactive, and complex power flows into AC or DC branch j at time ¢
at the from bus i;r (or the to bus 220) are denoted by p/", ¢/, and s/7 (or pt°
q*°, and s'°) and are related by:

p]t+\/ q "VieJ«wteT (4)
§‘t’—pﬁ+\/ IgigvjeJ“ teT (5)

The winding ratio, phase difference, and complex winding ratio of AC branch j
in time ¢ are denoted by 7, ¢;¢, and n;; and are related by:

Njt = Tjt (cos ¢j+ +V—1sin qut) VjeJ*teT (6)

4.3 Device settings and feasible regions

Producing and consuming devices and shunts and AC branches j have integer
variables u;;, representing discrete settings:

wje, € {...,—1,0,1,...} Vj € Jrres:shac 4 o (7)

For producing and consuming devices and AC branches, the u;; variables are
binary, with the value 1 representing the online or connected state and 0 repre-
senting the offline or disconnected state:

0<uj <1VjeJree teT (8)



For producing and consuming devices, there may be must run and forced outage
conditions:

uje =1Vj € Jme teT" (9)
wje =05 € Jrmes t e TP (10)
For producing and consuming devices and AC branches, we introduce additional

binary variables uji" and uj’?f, with the value 1 indicating startup (or shutdown)
or in the case of AC branches connection (or disconnection):

wit usy €{0,1} Vj € JPesec t e T (11)
Uit — Lisouj—1 — LU = uly — ulf Vj € JP e t € T (12)

For shunts, the u;; variables take values between prescribed bounds and repre-
sent the number of steps that are activated

UMt <uyy <UPVje M teT (13)

The winding ratio and phase difference of an AC branch is continuously ad-
justable within bounds, and these bounds are equal to 1 and 0 for transmission
lines but may be different for tap changing or phase shifting transformers:

TN <y <TG e JUt e T (14)
M < G < PTG E Tt ET (15)

DC branches have bounded flows and 0 real power losses:
—ppar < plt < pmat i e gl pe T (16)
—Per < ple <Pt je J¥ teT (17)
anin,fr < thr <QUTvje e teT (18)
QM < glt <QreTVjeJ® teT (19)
pli+ple=0vje ¥ ter (20)

Bus voltage magnitudes are bounded:

Vi <y SVIPOCN e IteT (21)

4.4 Producing and consuming device scheduling constraints

Producing and consuming devices have scheduling constraints restricting the
number of startups or shutdowns across sets of intervals:

D usp <ULV € Je e € B (22)
teTsw
d d, . , d
Z ujy < Ujse "G e JP e € B (23)
teTse



Minimum uptime (and downtime) constraints preclude startup (or shutdown) if
a device has shut down (or started up) within a prescribed set of prior intervals:

uSt <1— > uih vjegre el (24)
t/ETJd't"

uit <1— N W Vje e teT (25)
teTy?

4.5 Producing and consuming device real and reactive
power and reserves

The real and reactive power of producing and consuming devices j is bounded
by time-varying limits:

Pl Mgy < pje < P*uy Vj € JP te T (26)
e < qie < QN uge Vi€ JP e T (27)

Ramp rates constrain the change in real power over time:

— Dy (P} %uje + Piust) < pje — lisopja—1 — Limo Py
< Dy (P (uje — ul) + Pyhusy) Vje JP t e T (28)

The full formulation considers a suite of reserve products, including regula-
tion up and down, synchronized (i.e. spinning) and non-synchronized reserve,
ramping reserve up and down, and reactive power reserve up and down. Both
producing and consuming devices are modeled as able to provide these prod-
ucts, within technical capabilities. For this paper, we formulate in detail just the
spinning reserve product, with a variable p7* denoting the quantity of reserve
provided by device j in interval ¢:

0 S p;fv S Pjrts'u,mamujt V] c Jpr,cs7t cT (29)
pje + Pl < PRTu Vi e Jte T (30)
pjt — D5’ = P uy Vi€ JOteT (31)

Other aspects of producing and consuming device operations modeled in the
full formulation but not formulated here include: reactive power capability con-
straints limiting both real and reactive power injection to a trapezoidal set or a
line segment for constant power factor, multi-interval startup and shutdown real
power trajectories, and multi-interval total energy constraints to model storage
and time-shiftable load.

4.6 AC power flow and balance

Power flows into shunts j are determined by the number of activated steps and
the bus voltage as well as the shunt step admittance YjSh

Sjt = }/jSh*thUiQt V.] S JSh,t eT,i= ij (32)
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The power flows on an AC branch j are equal to 0 if the branch is disconnected
and are otherwise a function of the voltages at the from and to buses and the
complex winding ratio on the branch as well as the branch admittances ij "
tho, and Y at the from and to buses and on the series element of the branch:
S‘{Zﬂ = ujtS(wit/njta Wit }/}ST’}/}fT) vj € Jac7t € T77’ = ,1:5.7“77:/ = i;o (33)
st = wjpS(wpe, wir /e, Y7, YO Vi € Tt € Tyi =4l i =it (34)
The function defining flows on an AC branch is
S(w,w", Y, Y") = Y™ ww* + Y*w(w — w')* (35)
Power balance:

fT to __ .
E Sjt — E st + E si + squ=sapViel,teT (36)
jegesioh jeJP” jEJ’?c,dc,fr jegaesdesto

i i

4.7 Security constraints

Security constraints require that the planned dispatch be secure to any of a
set of contingencies k € K, each defined by the unplanned outage of a single
AC branch jP*!, so that the set of remaining devices is J; = J \ {j2*'}. Post-
contingency AC branch real power flows pj;y follow a DC flow model, with
variables 0, representing the post-contingency bus voltage angles, and variables
for AC branch on-off status and phase difference fixed to their pre-contingency
values, using just the imaginary part B;" of the branch admittance Y

pjtk = — Ut B (O — Oirer, — ¢je) V€ Tk €T, j € Jy,i = i;-%,i/ =i (37)

Real power injections and withdrawals of non-branch devices and DC lines are
fixed to their pre-contingency values, and real power balance is enforced at
each bus. Since the pre-contingency real power values reflect an AC model
that includes losses, and the post-contingency AC branch flows follow a lossless
DC model, there may be a nonzero system-wide real power mismatch that is
represented by a variable p3':

pit=> pii— > pi— Y. pipVteT (38)
jer-r jeJcs jerh

The system slack is distributed across the buses 7 in proportion to fixed slack
distribution coefficients, which we define uniformly as a; = 1/|I|. Then the
post-contingency power balance constraints are

Z Djtk — Z itk + aipy = Z Djt — Z Djt

jeggeIT gy, jegEetond, jesy” jeessh
- JSHEE plevie LteT,ke K (39)
JeTieT A jeJiotony

k3
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4.8 Connectivity constraints

We require that the network consisting of all buses and closed branches be
connected in every time period ¢, in the base case and in every contingency k.
In other words, every pair of buses should be connected via a path of branches
in the set J9¢U {j € Jo° : ujy = 1}. This requirement is needed for realism, but
it has the further effect of ensuring that, given the base case solution, there is a
unique post-contingency solution, up to a network-wide shift of voltage angles.
We do not formulate this requirement as an algebraic constraint. We do note
that it is expressed in terms of the values of the finitely many binary variables
uj, for j € Jed¢ and t € T and therefore comprises a finite set of points in the
space of these variables.

4.9 Market Surplus Objective

The total market surplus objective z™* for maximization is the sum of a base
case objective 2°?%¢ minus a worst case contingency penalty z¢*9w°st and an
average case contingency penalty z¢t9-4v9:

ms _ Zbase ctg,worst

z —z — zctgavg (40)

The worst case and average case contingency penalties are the sum of time-

; : . ¢ t ¢
indexed worst case and average case contingency penalties z; 7*"*" and z;"7*"?

over times t:

2 : t st
thg,wo’r‘st — Ztc g,wors (41)
teT
t
thg,avg — 2 :Ztc g,avg (42)
teT
time

The base case objective is the sum of the time-indexed base case objectives z;
for times ¢ minus penalties 27 for multi-interval energy constraints e € E7™ on
producing and consuming devices j € JP™°® that cannot be indexed to time:

base __ time en
277 = z e — g 25 (43)
teT jGJW‘*CS,eGE;”

The time-indexed base case objective is the sum of appropriately signed terms
representing the values accrued and costs and penalties incurred for consump-
tion and production of energy, provision of reserves, unit scheduling, topol-
ogy switching, transmission overloading, reserve shortage, and real and reactive
power imbalance:

time __ en en rsv su su on
= Z Fjt — Z Fjt Z (255" + 251 + 251+ 257)

jeges jeJer jeJgrries

=3 () - S =G ) (44)

jeJac neN el
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Specifically, in time ¢, 2§ is the value accruing to consuming device j € J
from consumption of energy or the cost incurred by producing device j € JP"

: . LTSV su sd on < S H
from production of energy; 23", 27y, 2y, and 27" are the cost of providing

reserves and startup, shutdown, and no-load costs incurred by producing or
consuming device j € JP"; 23" and 27, are the cost of topology switching and
the penalty of transmission hmlt overload incurred by AC branch j € J*; 273"
is the penalty incurred by reserve shortage in reserve zone n € N; and 2!, and
2], are the penalties incurred by real and reactive power imbalance at bus i € I.
For each interval, the time-indexed worst case and average case contingency
penalties are defined as the maximum and the average over contingencies k € K

of contingency-indexed penalties 2’

Zroworst — max 29Vt eT (45)
I =1/|K| Y 2t VteT (46)

keK

The contingency-indexed penalties are the sum over AC branches j of post-
contingency transmission limit overload penalties 2k

il = Y Sy VteTkeK (47)
jeJaecndy

4.10 Components of objective terms

The value accruing to a consuming device (or the cost incurred by a producing
device) j from the consumption (or production) p;; of power during time ¢
is modeled with a concave (or convex) piecewise linear energy value (or cost)
function CF":

25 = DyC5 (pj) Vj € JPP et €T (48)

Here Dy is the duration of time interval ¢, which may differ across intervals.
Throughout the formulation, a factor of D; is applied to time-intensive (i.e.
per hour) quantities to transform them into absolute quantities. The cost to a
producing or consuming device j of providing reserves is a linear function of the
quantity of reserve provided:

’I"S’U D*Crsvp'rsv v] E Jp’l",CS7t G T (49)

Startup, shutdown, and no-load cost are formulated in a simple fashion here,
but the full formulation includes downtime-dependent startup costs as well:

Jt = C" max (0 wjr — Lesouj—1 — L= OUO) VjeJrme teT (50)
]t = CSd max (0 Tesouje—1 + 1= OU — ujt) VjeJrms teT (51)
23 = DyCiMuyy Vi € JPPt €T (52)

13



Bus real and reactive power imbalance penalties are multiples of the absolute
values of the corresponding imbalances:

28, =D CPlpy| Vie I, teT (53)

th = Dth|qit| Vi S I,t eT (54)
Penalties are applied to zonal reserve shortages p;¥, and for the generic reserve
product modeled here, the reserve requirement p,;""“? for reserve zone n is a
multiple o, of the largest energy dispatch value over producing devices in zone
n, where J, is the set of devices in zone n:

;"Liv Dtorsvpni“ Vn € N,teT (55)
TSV rsv,req rsv
Py =max | 0,py, Z Dj¢ vne N,teT (56)
jeJeresn,
ravTed — ]Elﬁz}?‘] pjt Vne€ N,teT (57)

In the full formulation, the requirements of the various reserve products include
endogenous requirements (i.e. depending on the dispatch, as with the generic
product modeled here) and exogeneous requirements (i.e. a fixed value for each
zone and time period). Some of the endogenous requirements (e.g. spinning
reserve) depend on the maximum device energy dispatch, while others (e.g.
regulation) depend on the total over all devices. Multi-interval energy limits
are formulated as soft constraints with penalties on violations:

250 = C°" max (0, A;ZO + ZAjfjtpjt> VjeJr” e e ES" (58)

j@
teT
Topology switching cost on AC branches
251 = DyC% |uje — lysouji—1 — Li—oUj| Vj € J*,j €T (59)
AC branch flow limits enforced as soft constraints with penalties on violations
25, = D;C* max (0 |s77| — Sme [ske| — Sym) VieJeteT  (60)
Post-contingency AC branch flow limits are similarly enforced as soft con-

straints, with reactive power flows assumed to be as in the base case and real
power flows pj., defined by the post-contingency DC flow model:

1/2
2, = DiC® max (0, (P + max(qfl q9)?) " = ST az’Ct“])

Vke K,jeJ*NJg,teT (61)
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5 Traditional Approaches

Unit commitment problem, UCP, is a day-ahead market clearing system op-
eration practice that determines the discrete on/off decisions and continuous
dispatches of participating generation units. The problem is known as mixed
integer nonlinear programming, or MINLP. For decades, linearized DC power
flow models have been used to reduce computational complexity when describ-
ing how nodal voltages affect power flows across networks. The problem for
a large-scale network is frequently extremely complex. There have been two
approaches that have received the most attention: dynamic programming and
mixed integer linear programming, or MILP.

The sequential nature of decision-making inherent in the UCP lends itself
particularly well to Dynamic Programming (DP). It divides the problem into
stages and solves each one optimally. If all stages are solved correctly, this
methodology ensures that the optimal schedule is identified. Furthermore, DP
can handle a wide range of constraints and nonlinearities within a stage, which
is common in power generation problems. Dynamic programming identifies the
UC schedule to intermingle the temporal stages if the OPF's considered in each
stage are all independent. The major disadvantage of DP is the ”curse of di-
mensionality.” The computational burden grows exponentially as the problem
size grows, making it impractical for large-scale power systems. This limitation
is significant in real-world applications with a large number of units and time
periods. Furthermore, DP implementation can be complex and may necessitate
significant computational resources. However, because the complexity is con-
sidered at each stage, this DP approach can employ the highly complex nature
of power flow.

Due to advancements in MILP solvers and computational power, Mixed In-
teger Linear Programming (MILP) has become increasingly popular for solving
the UCP. MILP is effective at dealing with large-scale problems and strikes an
appropriate balance between solution quality and computational efficiency. The
UCP is formulated as a linear programming problem with integer constraints,
making it tractable for large datasets. MILP solvers use sophisticated algorithms
to efficiently explore the solution space, which frequently results in the discovery
of good solutions in reasonable time frames. The disadvantage of MILP is its
linear approximation. MILP may require additional constraints and variables to
approximate nonlinearities in real-world power systems, which can complicate
the model and potentially impact the accuracy of the solution. Furthermore,
while MILP is more efficient than DP at handling large problems, there is still
a trade-off between solution accuracy and computational time, particularly for
very large and complex power systems. Although DP is very accurate and best
suited for smaller or more divided problems, its computational limitations pre-
vent it from being applied to large-scale scenarios. While linear approximations
cause some precision loss, MILP provides a more realistic approach for large-
scale problems by balancing computational viability and solution accuracy. The
particular needs and size of the UCP at hand are often determining factors when
choosing between DP and MILP.
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The problem proposed in GO Ch. 3 differs from the traditional UCP in that
it incorporates the nonconvex full alternating current (AC) power flow model.
The addition of the full AC power flow model to the UCP significantly increases
the problem’s complexity. For realistic modeling of power system operations,
the AC power flow equations, which include nonlinear relationships, must be
accurately represented. The nonlinear AC power flow model is written in Mixed
Integer Nonlinear Programming (MINLP). Nonlinear equations can be directly
included in the model using MINLP. However, solving MINLP problems is more
computationally difficult than solving MILP problems, especially for large-scale
power systems. The combination of integer decision variables and nonlinear
equations adds to the complexity. Several approaches can be considered when
transitioning from a linear power flow model to a full AC model within the
MILP framework: relaxation techniques, decomposition techniques, extended
DP, and hybrid approaches.

Linearization of AC power flow is the process of linearizing the equations of
AC power flow around a specific operating point. This method converts nonlin-
ear equations into linear equations that can be easily integrated into the MILP
framework. However, this linearization can result in inaccuracies, particularly
when large deviations from the chosen operating point are present. Relax-
ation Relaxing the nonlinear AC power flow equations can be accomplished
using techniques such as second-order cone programming (SOCP) or semidefi-
nite programming (SDP). These methods use convex constraints to approximate
nonlinear constraints, making the problem more tractable while maintaining a
higher degree of accuracy than simple linearization. This method strikes a rea-
sonable balance between computational feasibility and accuracy.

Decomposition Techniques entails employing decomposition techniques to
solve the UCP and AC power flow problems iteratively. The UCP problem can
be solved using a simplified power flow model, and the generated generation
schedule can then be evaluated using the full AC power flow model. If the
AC power flow constraints are violated, the UCP solution is adjusted, and the
process is repeated until a viable solution is found. According to the problem
formulation described in the previous section, the MINLP incorporates soft
constraints rather than hard constraints using linear penalty functions, and
the UCP solution always returns a feasible solution. The formulation of the
problem may encourage this approach, and as a result, we observed that many
competitors use these techniques.

Combining methods can also be beneficial. Critical time periods or sce-
narios, for example, may require a detailed AC model, whereas less critical
periods may require a simplified model. This method’s primary advantage is its
balance of accuracy and computational efficiency. It ensures that the UCP is
solved precisely enough during critical periods while maintaining overall compu-
tational tractability. However, the added complexity of managing two different
modeling paradigms and ensuring consistency and accuracy in the transition be-
tween them is a disadvantage. There’s also a chance that the simplified model
will overlook certain system nuances during non-critical periods, resulting in
suboptimal or less robust decision-making. Therefore, the effectiveness of this
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approach is heavily reliant on correctly identifying which periods necessitate de-
tailed modeling and which do not, which necessitates a thorough understanding
of the system’s dynamics and operational characteristics.

Each approach has trade-offs between computational demand, solution accu-
racy, and the ability to deal with the complexities of real-world power systems.
The method chosen is determined by the specific requirements of the power sys-
tem under consideration, the available computational resources, and the level
of accuracy required.

6 Competitors’ approaches

The major accomplishments of the GO competitors in solving the complex in-
tegration of Unit Commitment (UC) and AC Optimal Power Flow (AC OPF)
have predominantly followed a decomposition approach. Various teams, while
employing diverse methodologies, have commonly decomposed the problem into
an initial UC phase coupled with a simplified OPF to ascertain the UC deci-
sions. A critical observation across these methodologies is the importance of
how the continuous variables, determined by the UC decisions, are managed in
the subsequent OPF phase. This integrated analysis delves into the compar-
ative efficiency of these approaches, focusing on the utilization of continuous
variables post-UC decisions.

6.1 Common Decomposition Strategy

UC Followed by Simplified OPF A recurring theme in the methodologies is the
bifurcation of the problem into two distinct phases. Initially, the UC problem
is solved to establish the operational decisions for generation units. This phase
generally involves simplifying assumptions and heuristic techniques to ensure
computational tractability. The teams adopted various strategies, such as iter-
ative rounding, linear approximation, and relaxation techniques, to efficiently
navigate through the complex landscape of integer and continuous variables in
the UC problem.

6.2 The Role of Continuous Variables in Post-UC OPF

Post-UC decisions, the focus shifts to the OPF phase, where the problem
becomes somewhat independent, allowing for the application of heuristic ap-
proaches. A key differentiator in performance among the teams was noted in
the handling of continuous variables determined from the UC phase. Teams
that strategically accepted and integrated these continuous variables into the
OPF phase demonstrated better performance. This approach effectively bridges
the initial UC decisions with the more detailed OPF analysis, ensuring that the
continuous operational parameters (such as power flow and voltage levels) are
realistically aligned with the discrete decisions made during the UC phase.
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6.3 Methodological Variations and Performance

Each team, while conforming to the general structure of problem decomposition,
exhibited variations in the integration and handling of continuous variables:

Team A’s (Occam’s razor) methodology involved solving the ACOPF twice,
each time with different constraints and considerations regarding reserves and
voltages. This dual-phase approach allowed for a refined handling of continuous
variables, albeit with the trade-off of increased computational complexity.

Team B (GravityX) addressed the challenge of integrating AC losses into the
UC model. By adjusting the continuous power flow variables in the UC phase
based on previous operational points, they effectively bridged the gap between
the discrete and continuous aspects of the problem.

Team C (Electric Stampede) and others employed relaxation and approxi-
mation techniques in the UC phase, focusing on achieving a balance between

computational efficiency and the realistic representation of continuous variables
in the OPF phase.

6.4 Concluding Remarks

The comparative analysis of these methodologies underscores a critical aspect
of power system optimization: the effective management of continuous vari-
ables post-UC decisions. This approach not only ensures coherence between
the UC and OPF phases but also significantly enhances the overall performance
and realism of the solution. The diversity in methods reflects the complexity
and multi-dimensional nature of the UC and AC OPF integration challenge,
highlighting the need for innovative, adaptable, and efficient solutions in this
evolving field of power system optimization.

6.5 Occam’s razor

This team did the entire project in about six weeks. Thus a series of substantial
simplifications were made with the goal of achieving a limited quality of the
approach. Quickly decsions on the tools were made by choosing Julia with
JuMP, Gurobi for discrete and IPOPT for continuous optimization. Intense
experimentation lead to the ultimately submitted program.

To achieve a feasible solution in reasonable time the following major sim-
plifications are made. UC is done for the entire time horizon and in each time
period ACOPF is solved twice. Each subproblem is simplified and the feasible
region modified through relaxation, restriction, and approximation. The key is
to find adequate alterations and (if needed) projections onto the original feasible
region.

The UC part of the algorithm was made simple or even very simple, One
reason for solving the ACOPF part twice is to be able to ignore reserves in the
first round and fix voltages and flows. A second reason is to assure numeri-
cal stability and precision. The resulting method is simple to understand and
transparent, achieving the desired moderate solution quality.
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This general algorithm, however, cannot work well for all datasets. So,
several parameters such as the choice of UC, whether reserves are used in the
first ACOPF round, and several others were customized for different datasets.

In a future continuation the algorithm would be made more sophisticated
through a rolling horizon approach and a spatial decomposition. Parallel com-
putation will also be applied to accelerate the computation.

6.6 GravityX

Introduction

To claim mastery of a given problem, one can derive scientific formulas,
write concise mathematical theorems, and publish articles in prestigious venues,
but when push comes to shove, the reality of solving a real-world problem can
hit hard. The importance of having a well-defined and transparent evaluation
procedure with realistic datasets cannot be stressed enough. With different
teams competing for the best approach, the pressure of performing well and
getting to the top of the leaderboard can be very motivating. Most importantly,
under this setup, there is zero tolerance for false claims or fake contributions,
if your approach is not correct or if it does not scale, it will soon be exposed,
your leaderboard score will reflect it.

Methodology, Challenges and Solutions

One main challenge in the GO competition consisted in dealing with integer
variables. The GravityX team adopted a fast heuristic outlined below. The
Iterative Batch Rounding (IBR) heuristic starts by solving the continuous re-
laxation of the given MINLP. It then loops over all variable batches, rounding
and fixing the discrete variables appearing in each batch separately before re-
running the reduced MINLP. The heuristic iterates till all batches have been
covered. The ordering of the batches, as well as the custom rounding method
play an important role. Another major challenge consisted in capturing nonlin-
ear constraints such as AC losses in the Unit Commitment (UC) model: Using
lossless models often led to the under-commitment of generators, consequently
leading to large penalties due to soft constraint violations due to nodal imbal-
ances. The approach adopted by the GravityX team consists of using the AC
losses obtained by fixing the UC binaries to the previous operating point solu-
tion, solving the resulting ACOPF, computing the active and reactive loss on
every edge, then adding the linear constraints enforcing linear loss constraints
on active and reactive power flow variables appearing in the UC MIP formula-
tion. This approach can be iteratively refined by solving an ACOPF after each
MIP and recomputing the loss terms until a fixed point is reached or the time
limit is exceeded.

Future Research Combining spatial decomposition with temporal decompo-
sition and mixing coarse-grained with fine-grained models is a future research
direction. Combining machine learning with mathematical optimization is also
another promising research avenue.
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6.7 Electric Stampede

This team also used the split DC with Gurobi first, followed by AC with Ipopt.
In the MILP the non-convex constraints are relaxed. In order to get as close
to an LP as possible, McCormick envelopes were used for the bilinear terms in
the quadratic constraints for active power. This comes from the branch flow
limit and the resulting SOCP relaxation was added to the UC model. It lead
to about a 75% solve time reduction and was easier to solve than the standard
convex relaxation. No relaxation was used for ACOPF.

Further techniques applied were slack variables for sparse constraints, reduc-
tion of lengthy linear expressions, reformulated downtime-dependent start-up
costs, and min/max constraint reformulation. The control horizon was broken
down to a single time step. A single upper/lower bound pair was sought that
satisfied all time steps. It limited accuracy and was only partly used for datasets
with more than 2000 buses. For the smaller networks the full formulation was
applied.

The team worked entirely in Python. In the UC part Pyomo was used and
for ACOPF the direct interface CYIPOPT. Algorithms were not run in parallel
but all available threads were used for Gurobi. Ipopt was run in serial mode.

Many details of the approach used were finalized after intense testing. This
was done with respect to inclusion of reserves and of various simplifications. UC
decisions that were suboptimal or infeasible were not updated. Luckily in most
cases feasibility was preserved. However, a feasible solution will always exist
due to the addition of slack variables.

6.8 Yong Optimization

The team different from most others implemented in C. It uses unit status results
from a fast UC solver, schedules from multi-period ACOPF, then generates
constraints if there are infeasibilities as from base case or contingency limits.
The fast UC solver is Lagrangian based. The nonlinear solver is an own IPM
code which utilizes Pardiso for linear algebra.

Unimportant constraints such as the subset of units providing reserves were
eliminated. Upper and lower bounds were determined to decouple the multi-
period ACOPF. Various techniques were used in Pardiso to speed up the solution
of a single-period ACOPF such as choice of the initial point, sparse matrix
techniques, step size choice, scaling. Post processing was required to improve
or verify the results. A fast-decoupled AC model, factorizations, and reserve
optimization were utilized.

If UC decisions needed to be adjusted, a linear sensitivity factor is generated
from the violated constraint and sent back to the UC model. Typically only a
few iteration were needed to substantially reduce the power mismatch.

HPC was leveraged to calculate shift factors for quick power flow solutions.
This way thousands of contingencies could be evaluated very quickly. In order
to reduce congestion and line losses, line switching was implemented through
selection of line candidates and the use of a linearized AC network model. Very
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little benefit was observed for the reduction of line losses but some benefit could
be expected by improving power flow convergence.

6.9 Artelys

This team did not utilize any discrete solver. Solution consisted of two NLP
solves. Python was used to program and then AMPL as modeling language.
Connection between the two was very costly timewise but KNITRO provides a
good IPM implementation for which AMPL’s AD efficiently delivers the deriva-
tives. Substitution of penalty variables was important for reducing the size of
the problem.

The main steps of the two-step algorithm are to first fix some integer vari-
ables, to relax the remaining integer variables, and then to solve the resulting
NLP to low precision. The remaining integer variables were rounded and fixed.
The rounding was no simple rounding. Feasibility was encouraged and a con-
servative approach taken.

Next, the NLP was resolved to high precision warm-starting from the previ-
ous solution. If no feasibility was obtained a repair was attempted.

In addition, it was tried to optimize over all time periods with some sim-
plification for the largest networks. Overall, many parts of the algorithm could
be executed rigorously. The smaller networks could be solved with KNITRO as
MINLP. This is due to the fact that KNITRO has effective heuristics for the
discrete variables resulting in good but in general suboptimal solutions in rela-
tively short time. On the other hand, very large continuous NLPs with about
10m variables can be solved with KNITRO as well.

For larger networks linear approximations were used to balance equations
and limit constraints. DC power flow was not used. For the largest cases several
strategies were utilized such as fixing all lines to ”on”, all producer/consumer
binaries to priors and the shunts as well. Some continuous variables were treated
as continuous across all time periods such as pon, pmax, pmin. Some reserve
variables could be fixed to zero.

The infeasible solution repair hardly ever needed to be invoked. Not much
attention was paid to contingencies. Essential strategy was to ensure network
connectedness. Many things could be improved with additional time.

6.10 The Blackouts

The key components of the algorithm are: for UC a linear approximation of the
active flow plus a full horizon and for ACOPF to allow some deviation from
supply/demand at a penalty. The algorithm proceeds in up to 64 ”ranks” in
parallel where the ranks are: Solve the UC, then alternatingly polish the UC
solution, solve each ACOPF and polish the UC solution using ACOPF, predict
true objective, write to file if improving. This writeout is considered a particular
advantage because at any time the currently best solution is available.

There are two main reasons the results were not as good as expected, a
technical one being an inexplicable memory issue that only occurred on the
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competition machine and the fact that transition switching did not work well
and was taken out. Very positive was the fact that all available time could be
used for improvements due to the above writeout.

The team decided to modify the up and down time constraints to a convex
hull approximation. Use of the ADMM algorithm with added line coverage
constraints. Gurobi’s lazy constraint handler is successful in dealing with the
few violated voltage constraints. Smart linking of UC and ACOPF components
through ADMM. 80% of UC solve time spent on LP. Manual preprocessing of
LP needed to be augmented by various heuristics for fixing variables to integers.
If necessary use ”unfixing” strategies.

In the ACOPF subproblems TPOPT was used with MA97 in parallel for
smaller and serial for larger networks. Warm start was done including the
use of appropriate options for IPOPT. UC constraints with bounded P/Q and
rounded shunts by relaxing and then rounding to the nearest integer. No spatial
decomposition.

For a fast contingency analysis sensitivity factors were computed using rank
1 updates of the PTDF matrix. Still it is difficult to compute the cost of all
solutions. DC-based heuristic was applied to switch overloaded lines sequen-
tially. In the future a warm-start functionality added to the LP solver promises
substantial performance improvements.

7 Results from the Go Ch. 3 Competitions

For sake of guaranteeing the feasibility of the problem, we employed the soft
constraints rather than hard constraints. The advantage of the linear formula
for the soft constraints would be its concise form that does not increase the
computational complexity. However, it allows small degree of violation regard-
less the penalty factors. Given that the problem already include highly non-
linear and nonconvex formula, other forms might be more relevant to enforce
the constraints such as logarithmic function. Nonetheless, we tested solutions
identified by the performers, and announced solutions only if they passed our
internal checkers. The internal checkers are designed to carefully examine if any
constraints are violated.

The solver codes implemented by the competition entrants were assessed
by running them on a selection of problem instances on a common hardware
platform. Each solver run took place on a dedicated node of the PNNL Decep-
tion high performance computing cluster with a fixed time limit. At the time
limit, the solver was terminated if it was still running, and if a solution file was
present in the working directory, then that solution file was evaluated. If no
solution file was present, or if the solution file was incorrectly formatted, then
the solver run was awarded a score of 0. Solution evaluation was performed with
a Python code (https://github.com/GOCompetition/C3DataUtilities) written
by the GO Competition support team. The solution evaluation procedure de-
termined whether the solution was feasible and computed the objective value.
If the solution was deemed infeasible, then the solver run was awarded a score
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of 0. If the solution was feasible, then the solver run was awarded a score equal
to the higher of the computed objective value and 0.

The scores of all runs of all the solvers submitted by the competition entrants
on all the problem instances were used to determine a total score of each entrant,
and these total scores were used to rank then entrants. The rankings were used
to award prizes to the entrants. In addition to the determination of feasibility
and computed objective, the evaluation code produced output on each solver
run showing the largest constraint violation of each type, giving the breakdown
of the objective into its various components, and recording data on the use of
computational resources. This section describes the analysis performed by the
GO Competition support team on the different solvers using this evaluation
output.

The procedure for invoking solvers, evaluating, scoring, ranking, and award-
ing prizes was followed over several events. In each event, a different selection of
problem instances was used for each of the three applications, and each appli-
cation was evaluated as a separate division of the competition with a different
time limit appropriate to the application with separate rankings and award in
each division. The real time application was division 1, the day ahead appli-
cation was division 2, and the week ahead application was division 3. In these
three divisions, the total score of each entrant was simply the sum of their scores
on all of the corresponding problem instances. Each competition event had a
different set of problem instances and new awards. This section of the paper
focuses on just the final event, where the largest prizes were awarded, and the
competition entrants had the most time to perfect their solvers.

For the analysis of solutions, we first introduce some solver concepts. In
addition to the solvers submitted by the competition entrants, the support
team implemented a benchmark solver ([<empty citation>]). The bench-
mark solver was invoked, and its solution evaluated, alongside the solvers sub-
mitted by entrants. For each problem instance, after all solvers were run and
the solutions evaluated, the maximum objective value observed among all the
solutions deemed feasible was called the ensemble objective, and the solution
attaining that objective value was called the ensemble solution. Notionally, a
solver could be implemented by running all of the submitted solvers and the
benchmark solver simultaneously and taking the best resulting solution. Such
a solver would then be called the ensemble solver. This ensemble approach is
comparable to the approaches of many commercial optimization solvers, for ex-
ample running a barrier solver at the same time as a simplex algorithm and
terminating with whichever solution is available first.

We also introduce some concepts of feasibility and objective components.
Some of the constraints defined in the problem formulation are critical to even
making sense of a solution. For example, the solution would be meaningless if
variables that are constrained to be integers were assigned non-integer values or
if real power dispatch variables were assigned values outside of the domain of
definition of the cost function. These constraints and others that are relatively
easy to ensure by simple projection methods are treated as hard constraints.
Any solution violating these hard constraints is deemed infeasible. A numerical
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tolerance is used in some cases to ensure that a determination of infeasibility is
not made unfairly.

A solution satisfying all these hard constraints but possibly violating the
remaining soft constraints is called feasible. The soft constraints include con-
straints, such as power balance, that would typically need to be satisfied in
a real world application, and we recognize the somewhat artificial concept of
feasibility used here by describing such solutions - which may violate the soft
constraints - as evaluation feasible.

The soft constraints include some constraints, such as power balance, that
correspond to physical laws, and some constraints, such as line flow limits, that
correspond to practical engineering limits. We therefore describe a solution sat-
isfying all the hard constraints as well as the physical laws as physically feasible.
And we describe a solution satisfying the hard constraints, and the physical law
constraints, and the engineering limits as engineering feasible. A fully successful
solution is one that is engineering feasible, but we have set up our evaluation
procedure so that it is possible to at least evaluate physically feasible and evalua-
tion feasible solutions as well and assess their merit alongside physically feasible
solutions. We use realistic penalty coefficients to penalize violations of the soft
constraints so that typically an engineering feasible solution will score better
than a physically feasible solution that is not engineering feasible, and a physi-
cally feasible solution will score better than an evaluation feasible solution that
is not physically feasible.

In order to understand the difference in quality between two feasible solu-
tions, a natural approach is to observe the difference in their objective values.
However, it is typically not clear how much of a difference is significant. There-
fore one often considers the relative difference in objective values, i.e. as a
percent of the objective value of one or the other solution or of a reference
objective value. However, we observed that frequently the value of the load
served is such a huge dollar amount as to dominate reasonably significant differ-
ences in solutions. Therefore, another reasonable approach is to view objective
differences relative to only the generation cost.

It is also not always clear how to obtain a reference objective value or a
reference value of the generation cost. One could use values obtained from the
ensemble solution or the benchmark solution, but it is not guaranteed a priori
that these solutions will be particularly high quality. Therefore, we also devel-
oped a crude approximation of the optimal objective value by considering only
the convex features of the value of load bids and the cost of generation offers.
Features of local power balance, ramping, unit commitment, losses, reactive
power, and voltage are ignored. This results in a single system-wide market
for real power in each time interval, and the market clearing equilibrium can
be easily computed to obtain a market surplus value that can be used as a
reference objective value. The cost of generation in this market clearing equilib-
rium can also be used as a reference generation cost value. The market clearing
equilibrium computed in this way behaves as a relaxation of full problem under
certain assumptions including no negative price offers. In general, the prob-
lem instances created by the GO Competition do not satisfy these assumptions,
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so the market clearing equilibrium is not guaranteed to be a relaxation. The
system-wide aggregate supply and demand curves are plotted in Figure 1 for a
single time interval in one of the competition problem instances. The equilib-
rium real power dispatch and price are represented by the intersection of the
two curves, and the area to the right of the intersection and between the two
curves represents the equilibrium market surplus.
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Figure 1: System-wide aggregate real power supply and demand curves for a
single time interval in a 73-bus problem instance.

Now, to analyze the results of the solvers developed by competition entrants,
we begin with feasibility. First we examine the significance of soft constraint
penalties as a way of understanding the degree to which the solvers satisfied
these constraints. Figure 2 shows the value of the real power imbalance penal-
ties, relative to the total objective, plotted against the objective value, over all
problem instances in Division 1. Each point plotted represents the ensemble
solution on a single problem instance. We see that the real power imbalance
penalties were not significant, generally less than 1% and typically much less.
Penalties on reactive power imbalance and on line overload in the base case,
plotted in Figures 3 and 4 were similarly insignificant. Therefore, the ensemble
solutions were largely feasible with respect to constraints representing physical
laws and with respect to the line limit engineering constraints. Similar obser-
vations hold for Divisions 2 and 3.
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Figure 2: Real power imbalance penalty as a percent of total objective vs. total
objective in division 1 ensemble solutions.

Reserve imbalance penalties were somewhat more significant, often around
1% to 10%, as shown in Figure 5. One way to view the reserve imbalance
penalties is that reserve requirements are often modeled with a reserve demand
curve, so that the requirement is merely one point on the curve, and these
reserve imbalances correspond to situations of reserve scarcity.

Post-contingency line overload penalties were similarly insignificant, as shown
in Figures 6 (average case) and 7 (worst case). As expected, the worst case penal-
ties, on the order of up to 1 % in a few instances, were more significant than
the average case penalties, but still relatively small. The worst case penalty
term was included in order to ensure that solvers face a nontrivial incentive to
respect the post-contingency line constraints.

We can perform similar analysis to determine the most significant compo-
nents of the ensemble objectives. In Figure 8, the generator production cost as a
percent of the total objective value is plotted against the consumer load value as
a percent of the total objective for Division 1. Each plotted point corresponds
to the ensemble solver on a single problem instance. This plot shows that the
consumer value is typically between 90% and 110% of the total objective, the
generator cost is typically between -10% and 10% of the objective. Further-
more, we see that gains in load value are realized in a one-for-one fashion at the
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Figure 3: Reactive power imbalance penalty as a percent of total objective vs.
total objective in division 1 ensemble solutions.

expense of increased generator cost. Figures 9 and 10 show the corresponding
plots for Divisions 2 and 3 and we make similar observations there.

The analysis of penalty values shows that the ensemble solutions were gener-
ally feasible. To assert that the ensemble solutions fully solved the competition
problem we need to assess optimality. To rigorously prove that a feasible solu-
tion is optimal, we need to compare its objective value to that of a relaxation
and show that the gap is small enough for practical use. We do not have a
theoretically rigorous relaxation procedure, but the market clearing equilibrium
is a relaxation under certain conditions and appears to behave like a relaxation.
Figure 11 plots the absolute gap from the ensemble objective value to the equi-
librium market surplus value against the equilibrium market surplus value in
Division 1. In all cases the gap is positive, showing that we have not found
a case where the relaxation behavior of the market equilibrium does not hold.
In Figure 12, we normalize the gap by the equilibrium market surplus value,
and we see that most of the time the gap is less than 10% and frequently less
than 1%. This supports the claim that the ensemble solutions are nearly opti-
mal. In Figure 13, we normalize the gap by the generator production cost in
the market clearing equilibrium solution instead of by the total objective, and
by this measure the gap is typically on the order of 10% to 1000%. With this
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Figure 4: Base case line overload penalty as a percent of total objective vs. total
objective in division 1 ensemble solutions.

more stringent normalization, we see that there might very well be significant
room for improvement in some of the solutions, or else the relaxation bound
provided by the market equilibrium solution might not be very tight, or some
combination of the two. This shows that interpretation of the gap between two
solutions depends rather strongly on the method of normalization.
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Figure 5: Reserve imbalance penalty as a percent of total objective vs. total
objective in division 1 ensemble solutions.

29



division 1

-
0] B8 .
e & - :.‘ ..t .
E lﬂ—Z . ' 1 - '
5 H * : .
TE: 10 £l . s-. L] ‘ .
= 00 leqpnc’
™
c i
g : 7
; 10-5 4  * ('
g ¢ :i e
el [ ]
= 1075 l
107 4
[ ] .
108 107
objective {$)

Figure 6: Average case post-contingency line overload penalty as a percent of
total objective vs. total objective in division 1 ensemble solutions.
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Figure 7: Worst case post-contingency line overload penalty as a percent of total
objective vs. total objective in division 1 ensemble solutions.
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Figure 8: Generator production cost as a percent of total objective vs. consumer
load value as a percent of total objective in division 1 ensemble solutions.
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Figure 9: Generator production cost as a percent of total objective vs. consumer
load value as a percent of total objective in division 2 ensemble solutions.
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Figure 10: Generator production cost as a percent of total objective vs. con-
sumer load value as a percent of total objective in division 3 ensemble solutions.
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Figure 11: Absolute gap of objective to equilibrium market surplus vs. equilib-
rium market surplus in division 1 ensemble solutions.
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Figure 12: Gap of objective to equilibrium market surplus relative to equilibrium
market surplus vs. equilibrium market surplus in division 1 ensemble solutions.
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Figure 13: Gap of objective to equilibrium market surplus relative to equilibrium
generator production cost vs. equilibrium market surplus in division 1 ensemble

solutions.
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8 Summaries and Future Research Directions

GO Challenge 3 anticipates an era marked by a harmonious blend of sophisti-
cated computational techniques and nuanced, adaptable algorithmic strategies
in the future of UC and AC OPF research. This vision is the culmination of
the collective insights of teams that have pioneered various approaches in these
fields.

The concept of dynamic, scalable modeling is central to this vision. Rolling
horizon approaches and the combination of spatial and temporal decomposition
are being pioneered by teams such as Occam’s Razor and GravityX. These
strategies represent a shift toward models that can adapt to the ever-changing
dynamics of power systems, allowing them to accommodate large-scale datasets
and fluctuating conditions with greater precision and efficiency.

In addition, there is a clear trend toward combining advanced computa-
tional methods with traditional mathematical optimization. This is evident in
the GravityX team’s interest in combining machine learning and mathematical
optimization, pointing to a future in which predictive analytics will play a criti-
cal role in improving the accuracy and efficiency of power system management.
This type of integration could result in algorithms that not only solve current
problems more effectively, but also anticipate future challenges, resulting in
more resilient power systems.

Another critical theme is efficiency in algorithmic design. Electric Stampede
and Artelys have shown the importance of tailoring computational strategies to
the specific needs of different power networks, whether through sophisticated
handling of complex constraints or balancing computational efficiency with so-
lution accuracy. This indicates a future where solutions are not one-size-fits-all
but are instead customized to the unique characteristics of each power system
network.

Furthermore, the Yong Optimization team’s exploration of High-Performance
Computing (HPC) and advanced numerical methods highlights the growing im-
portance of computational power in managing complex power systems. This
suggests that greater computational resources are being used to solve power
system problems more quickly and accurately.

Finally, as seen in The Blackouts’ approach, the integration of parallel pro-
cessing techniques and the development of new computational tools points to a
future in which solving UC and ACOPF problems becomes more efficient and
effective. Incorporating warm-start capabilities into LP solvers, for example, is a
step toward reducing computation times and improving the overall performance
of optimization algorithms.

In conclusion, the future of UC and AC OPF research is shaping up to be
an interdisciplinary endeavor combining dynamic modeling, computational in-
telligence, algorithmic efficiency, and high-powered computing. This integrated
approach is poised to more effectively address the complexities of modern power
systems, paving the way for more robust, adaptable, and efficient power system
management solutions.
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