

1 T b

D?

H % m :

< L . N

dvs ny

οī (=≚^

c [

2N 🗉 E 🛛

/ | ~ X I

R:g D

GO Competition Challenge 2: Analysis and Lessons Learned

October 16, 2022

PNNL: Brent Eldridge, Stephen Elbert, Arun Veeramany, and Jesse Holzer

ASU: Hans Mittelmann

PNNL-SA-174880

PNNL is operated by Battelle for the U.S. Department of Energy

fadEZd

iY < 7 ^~ /]Tb c - 0 .

H%mg+

banD? k;nihW

ASV %z

dvs ny:

οī (=%^)

ik l

N E W

R:g D

/ | ~ X I

f h 0 c[\

1} Z

e e

AIMMS

	 _	_
_		_
_		

SIEMENS Ingenuity for life

0

Partners

More information:

https://GOCompetition.Energy.gov

AMPL

G A M S

mosek

fadEZ

A5v %z

dvs ny

οι (=%^R

f h 0 c[\

; -⊌ ≀_f●

°p; ØNgEw

R:g D

/ | ~ X I

Grid Optimization (GO) Competition Goals

- Accelerate the development of transformational and disruptive methods for solving optimization problems related to the electric power grid
- Provide a transparent, fair, and comprehensive evaluation of new solution methods.
- Challenge 2 September 2020 October 2021 (4 divisions completed)
 - \$2.4 million in prizes awarded to 9 teams
 - 15 teams participated in the Final Event, C1 winning teams funded by prize money
 - 11 million CPU-hours
 - Data from Georgia Tech, Texas A&M, UW-Madison

t_}.0

dvs ny

οī (=⊗^)

f c[\ iK l

°p; ØNgEw

R:g D

/ | ~ X I

Challenge 2 Problem Formulation

- Built on Challenge 1 SCOPF problems (a minimization problem)
 - Single period ACOPF with security constraints
 - Short term operational actions 5 to 15 minutes prior to real time
 - Use in planning pre-determine actions that can be deployed in real time

- Outline for today:
 - Problem hardness
 - Penalties
 - Flexible demand
 - Solve time
 - Solution ensembles
 - Transmission switching
 - Use of HPC

dvs ny:

οī (= %^R

f c[iK l

°p; r∎NgEw

R:g D

/ | ~ X I

Problem Hardness Measures

A priori method

How much potential for improvement?

 $H_{prior} = \frac{\text{relaxed upper bound cost delta}}{\text{cost of feasible ACOPF solution}}$

A posteriori methods

How much benefit from selecting the best algorithms?

 $H_{post,0} = \frac{\text{best score} - 2\text{nd score}}{2\text{nd score}}$ $H_{post,1} = \frac{stdev(5 \text{ best scores})}{avg(5 \text{ best scores})}$ $H_{post,2} = \frac{stdev(5 \text{ best scores})}{max(5 \text{ best scores})}$

Pearson Coefficient with H_{prior} :

Scenarios (#)	H _{post,0}
All (120)	-0.1327
Synthetic (84)	-0.2055
Industry (36)	0.811

- Synthetic datasets: Correlation is 0.35-0.5 when H_{prior} is small.
- Offshoot: a priori difficulty is harder to measure when there is a large opportunity to improve the solution.

H_{post,2} $H_{post,1}$ -0.0692 -0.0692 -0.1593 -0.1608 0.915 0.917

H % m :

dvs ny

c [

iK l

N E W

R:g D

/ | ~ X I

Synthetic and Industry Dataset Differences

Comparison of individual team performance to ensemble (best score from each scenario)

- All & synthetic networks: smooth linear score increase compared to the ensemble.
- Industry: only 3 teams within 12% of the ensemble score.
- This raises a question of whether industry case difficulties were caused by coding errors (e.g., parsing) or because the optimization problems were inherently more difficult.

/]Tb

D?

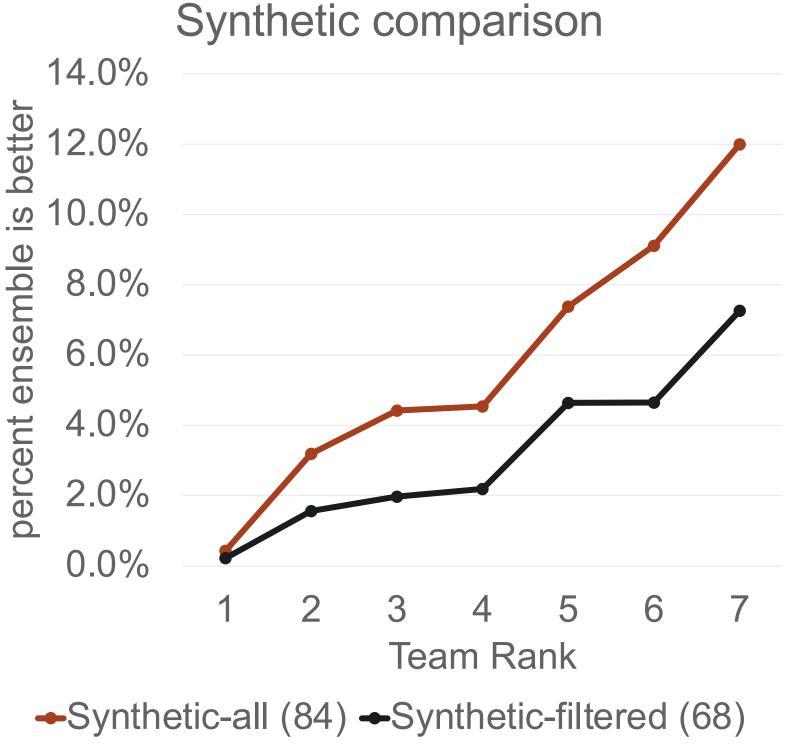
H % m 👳

A5v %z

dvs ny

οī (=<u></u>

f c[∖ iK l


P; CNgEw

R:g D

/ | ~ X I

Synthetic case comparison

- Excluded 16 cases that caused failures in topperforming solvers.
- Result: more consistency between scores.
- This means that the excluded cases were difficult for all teams.

t_}.0

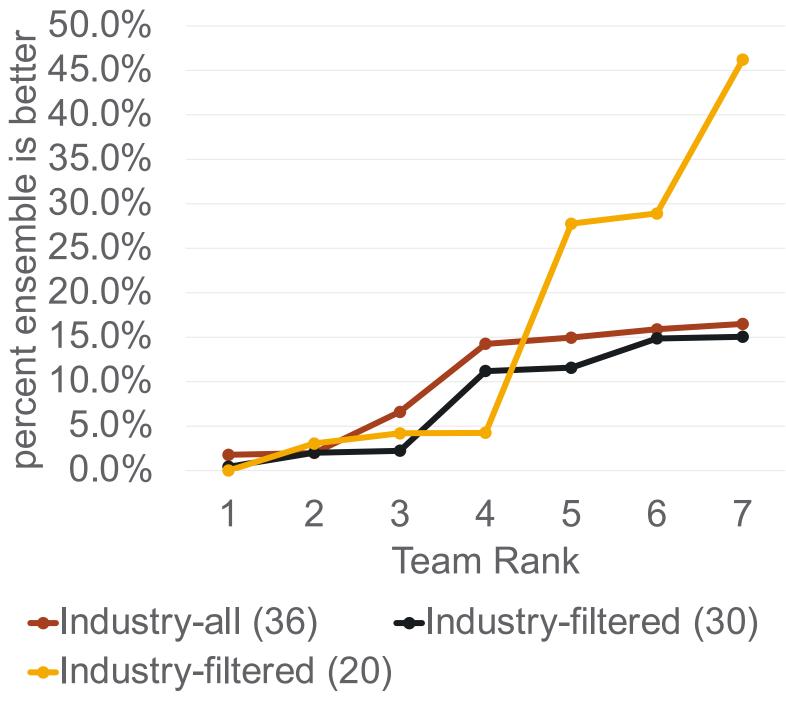
dvs ny

οī (=<u></u>

ik l f

P; CNgEw

R:g D


/ | ~ X I

f h 0 c[∖

Industry case comparison

- Filter 1: remove 6 cases w/ failures from 4 teams
 - Curve moves lower, so all teams had difficulty.
- Filter 2: remove all 10 French • network cases
 - Many teams perform much worse.
 - French network failures were specific to one team

Industry comparison

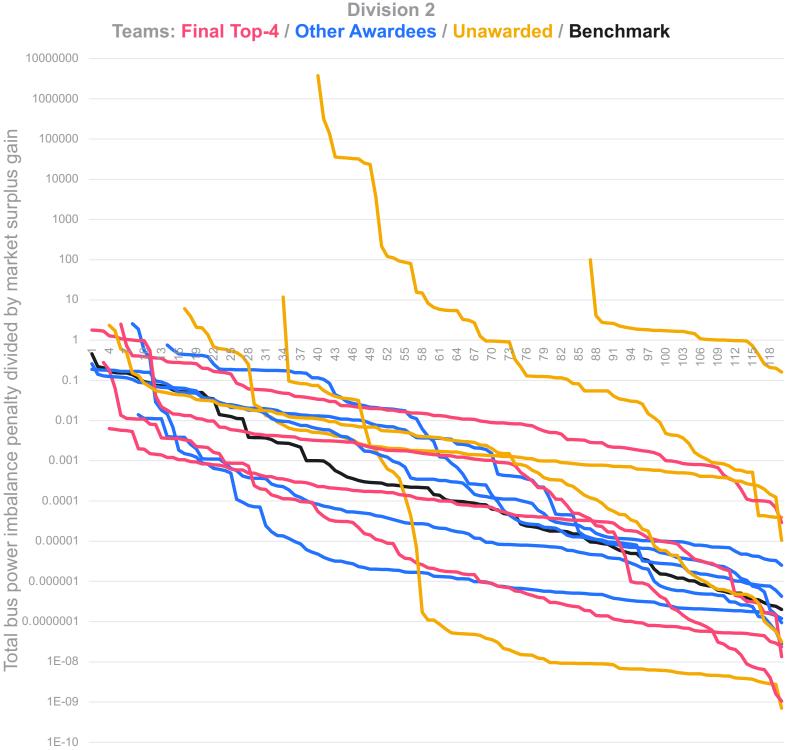
FadE

dvs ny

οī (

c [

iK l


N E W

/ | ~ X I

R:g D

Effect of penalties

- Plotted on right: bus imbalance penalties relative to MS gain score.
 - Sorted in decreasing order
 - "Missing" data (rightward shift) for solutions replaced by MSpp
- Imbalance penalties had very little influence among top teams.
- Improving prior point solution was very important to win prize money.

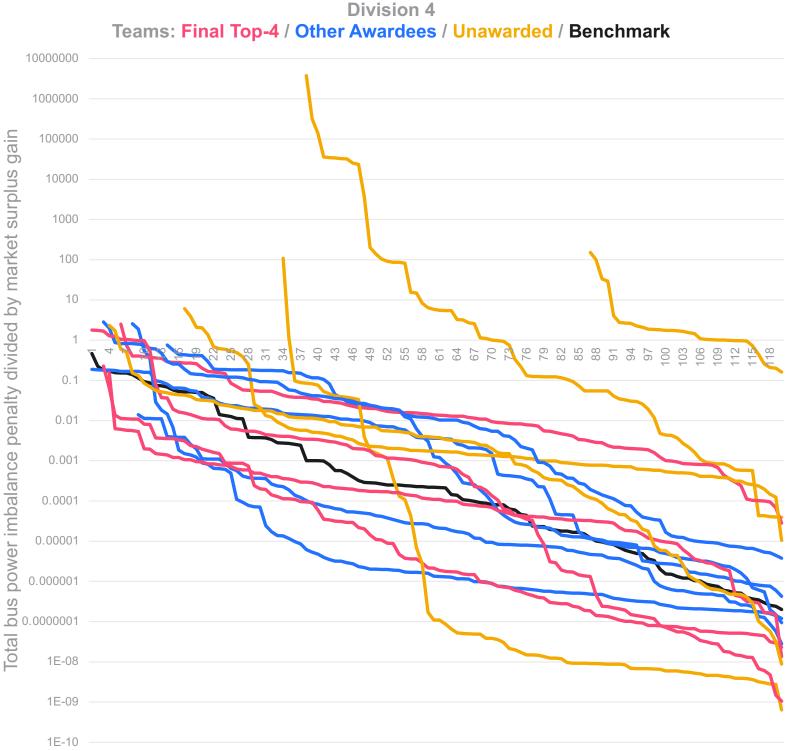
FadE

dvs ny

οī (

c [

iK l


N E W

/ | ~ X I

R:g D

Effect of penalties

- Plotted on right: bus imbalance penalties relative to MS gain score.
 - Sorted in decreasing order
 - "Missing" data (rightward shift) for solutions replaced by MSpp
- Imbalance penalties had very little influence among top teams.
- Improving prior point solution was very important to win prize money.

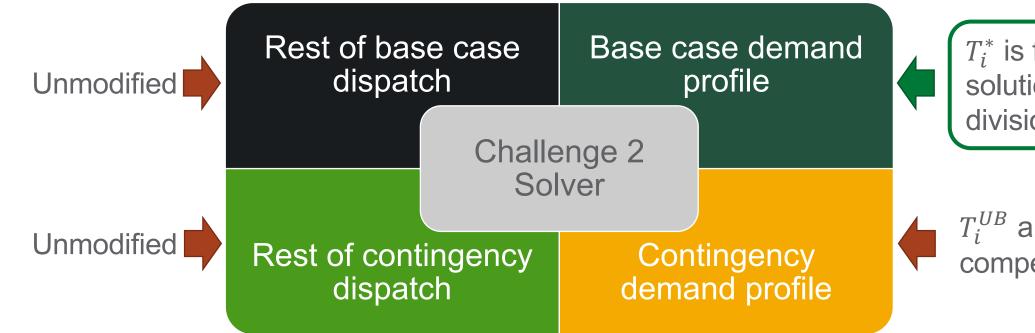
Pacific Northwest

dvs ny

οī (=</

; -∐K l _f●

p; ¶NgEw

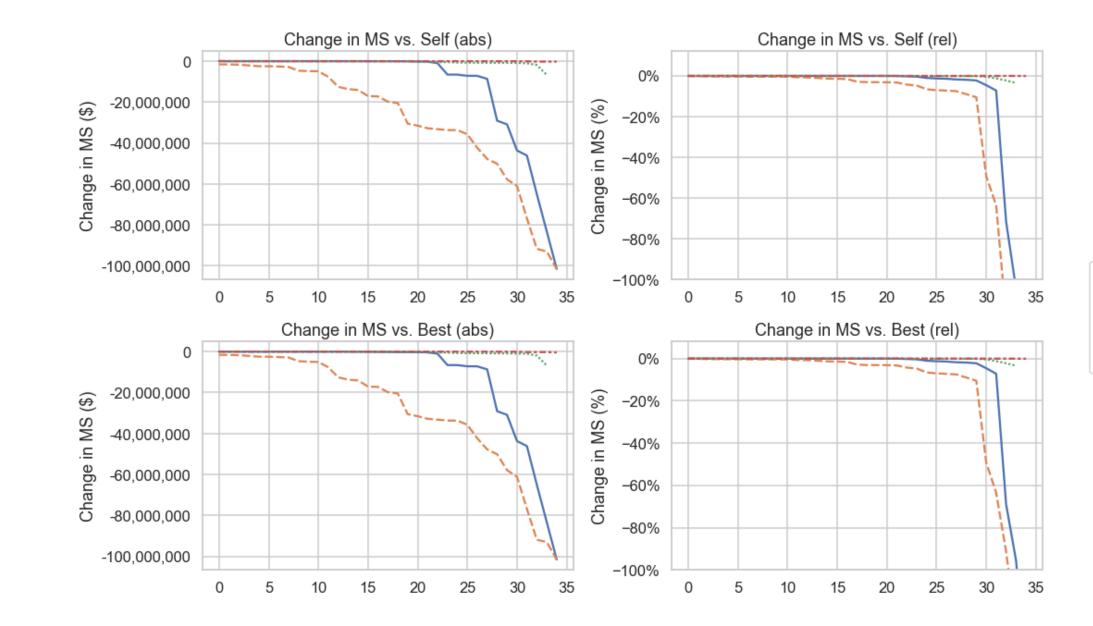

R:g D

/ | ~ X I

f h 0 c[∖

Effect of flexible demand on solution quality

- Solvers provided optimal load profiles given the value of bid-in demand.
 - Could this "optimal" load profile be fixed and then improved by other solvers?
 - Or, is load flexibility a necessary part of the optimization routines?
- Experimental set up was complicated due to Challenge 2 formulation, because the same upper and lower bounds are applied to pre- and post-contingency demand constraints.
- Load flexibility played an important role in managing contingencies, since almost all contingency constraints could be solved with post-contingency load curtailments.



 T_i^* is fixed at best solution from divisions 1 and 2.

 T_i^{UB} and T_i^{LB} from competition datasets.

Many solvers had difficulty incorporating fixed loads during ex post analysis.

dvs ny

οī (=≊^

0

c[

S

t_}.0 FadEZd

 $Y \subset 7^{-1}$

/]Tb c - 0 .

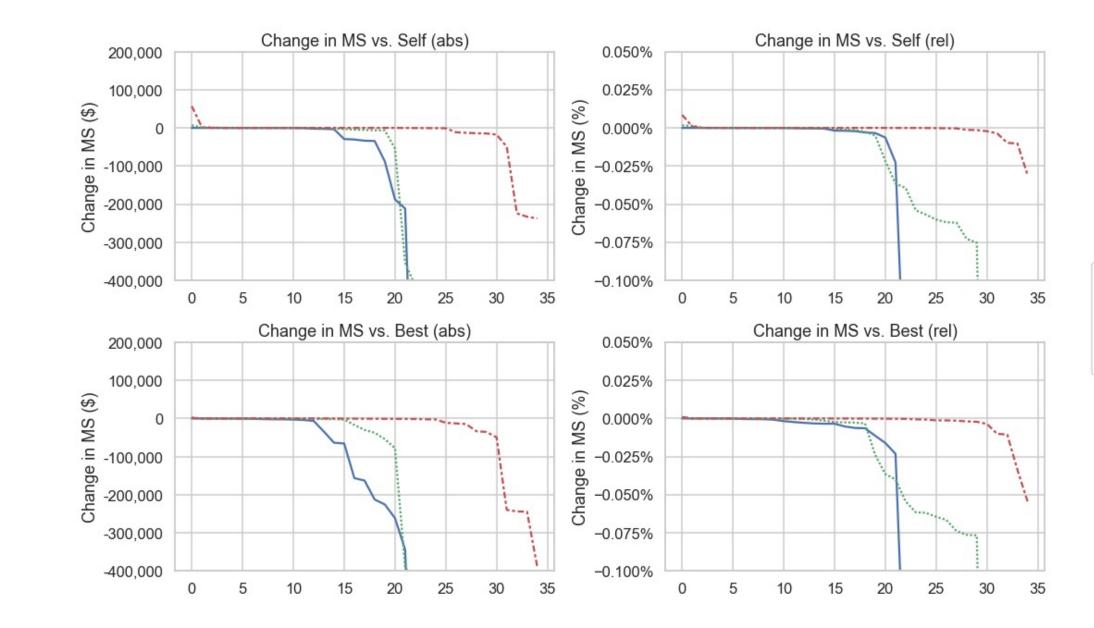
ban D? k;nihW

A5v %z

H % m 👳 🕇

Pacific

Northwest NATIONAL LABORATORY


if l f р N E W R:g D / | ~ X I

Fixed demand: $T_i = T_i^*$

 ccoffrin
 gocomp-djrs
 GO-SNIP
 hhijazi
 pearlstreettechnologies

Rarely, fixed demand could improve an individual score but not the best score.

B:dvs ny

0

c[

S

fadEZd

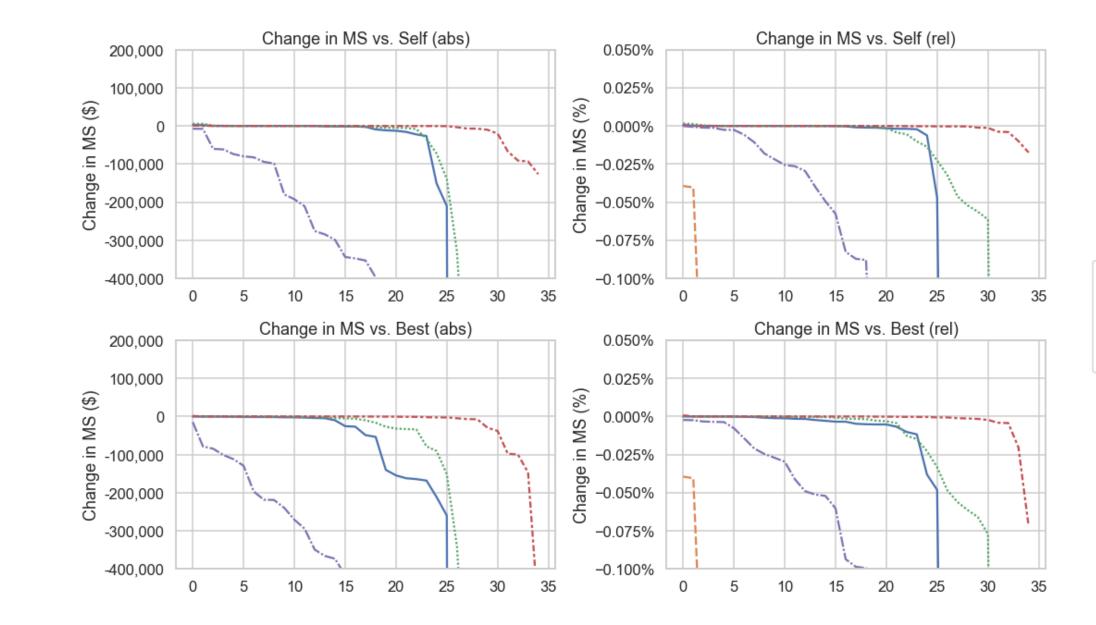
/]Tb c-o.

b@ D? <;nihW

5 V 1 % Z

H % m 👳 🖣

Pacific


Northwest

iK l f NgE w YR:g D /|~XI K3k

Fixed demand: $T_i = T_i^*$

 ccoffrin
 gocomp-djrs
 GO-SNIP
 hhijazi
 pearlstreettechnologies

Modification with ± 0.01 feasibility neighborhood: Still no improvements.

3:dvs ny

οī (=≊^

'h 0

t_}.0 FadEZd

iY⊂7^~

/]Tb c-o.

H % m 👳 🕇

Z

b@ D? k;nihW # = G

A5v %z

~ S

Pacific

Northwest

c[\ iK l f NE w YR:g D /|~XI K3k

Fixed demand: $T_i = T_i^*$ Modification: $T_i \ge T_i^* - 0.01$ $T_i \le T_i^* + 0.01$

- ---- ccoffrin
- --- gocomp-djrs
- GO-SNIP
- ---- hhijazi
- ---- pearlstreettechnologies

> $Y \subset 7^{-1}$ /]Tb c-o.

H % m 👳 🕇

banD? k;nihW

A5 V 1 % Z

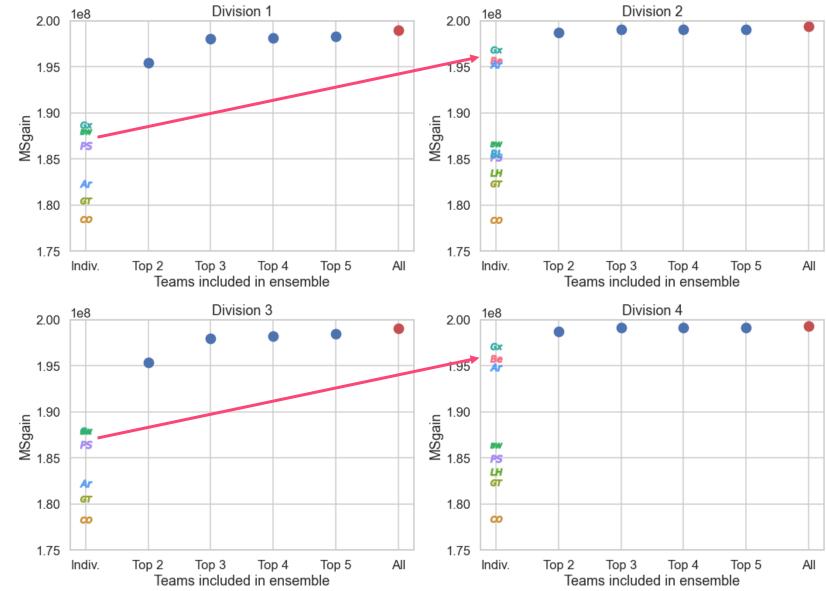
dvs ny:

5ī (=**

h 0 c[∖

i۴ ۱

P; MangE w


R:g D

/ | ~ X I

S

Ensemble scores of the top 2/3/4/5 teams

- The overall ensemble score is almost equal in each division.
- But individual teams still benefitted from additional time in Div. 2 and 4.
- Algorithm approach is more important when time is more limited.

/]Tb c - o .

banD? k;nihW

A5v %z

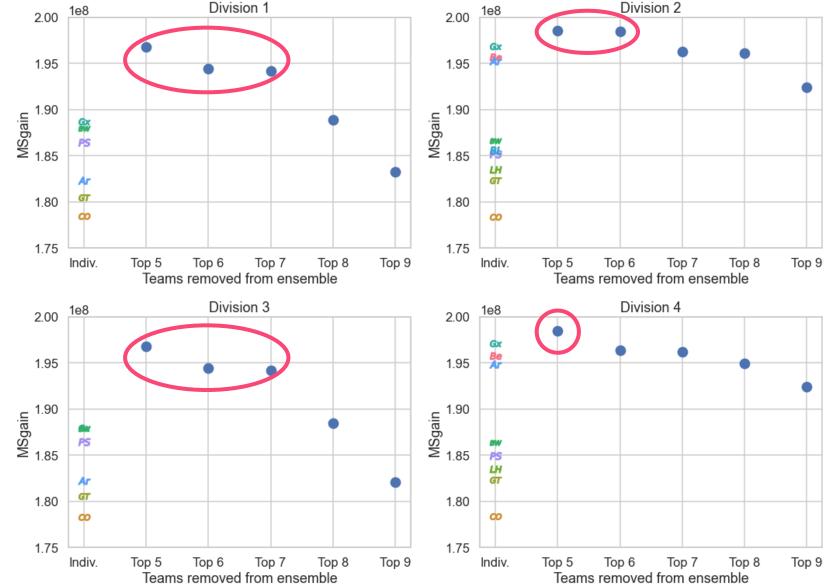
dvs ny

οī (=«^)

iK ۱ f

P; ØNgEw

R:g D


/ | ~ X I

f h 0 c[∖

H % m 👳 🕈

Ensemble scores with top teams removed

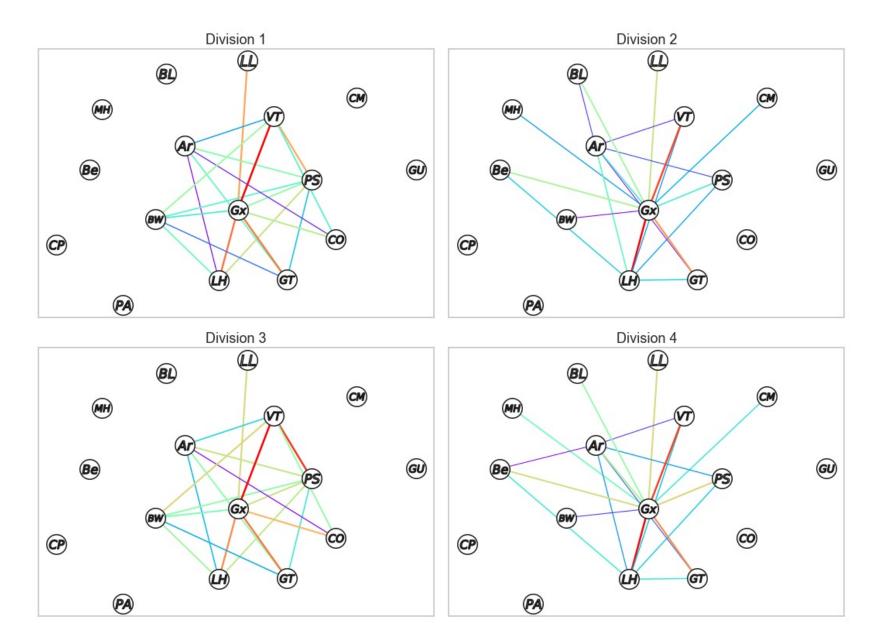
- An ensemble without any of the top 5 teams still would have won each division.
- Lower scoring teams were still able to find high-quality solutions, but not consistently.

dvs ny

οī (=≊^

iK l

P; ¶NgEw


R:g D

/ | ~ X I

h 0 c[∖

Pairwise ensembles (best in parallel)

- The top-scoring teams almost always scored high on the same cases.
 - Almost no benefit to combining solutions from the top teams
- Best pairings are GravityX with one of the VaTech, GaTech, or Lehigh teams

Twenty highest-scoring pairs are colored in (red=highest).

fluctrian f

A5vi%z

dvs ny:

οī (=≦^

f c[iK l

p; ¶NgEw

R:g D

/ | ~ X I

Transmission switching results

- Overall, very few attempts
 - Only five of the 16 teams attempted transmission switching.
 - Total 205 solutions with switches, but only 18 with solution improvement > 1%.
 - High risk, low reward: *reduced* teams' Division 4 scores in most (57%) of the attempts.
- Most switching improvements occurred in networks with < 10,000 busses.

	(a) # cases with	(b) # base	(c) # contin.	(d)	(d ÷ a)
Team	switches	switches	switches	(D4-D2)/D2 > 0.01	% success
Benchmark	19	16	0	5	26.3%
Bigwood	5	3	0	1	20.0%
LBNL	90	171	19,825	7	7.8%
Artelys	88	370	14,986	5	5.7%
GERS	3	0	~40,000	0	0.0%

fluctrian f

ASV %z

dvs ny

οī (=≦^

f c[iK l

P; ¶NgEw

R:g D

/ | ~ X I

Impact of high-performance computing resources

- Most teams used full HPC resources.
 - 6 nodes w/ 144 cores. Exceptions:
 - Bigwood: 1 node / 24 cores
 - Colorado: 3 nodes / 72 cores
 - VaTech: 6 nodes / 24 cores
- No apparent advantage or disadvantage to HPC.

Team Name	Total Prize, FE+T3 (\$k)	# nodes	# cores
GravityX	730	6	144
NU_Columbia_Artelys	530	6	144
GOT-BSI-OPF (Bigwood)	420	1	24
Pearl Street Technologies	340	6	144
Electric Stampede (Colo.)	140	3	72
GMI-GO (GaTech)	120	6	144
Monday Mornings (LBNL)	60	6	144
GO-SNIP (Lehigh)	30	6	144
Gordian Knot (VaTech)	30	6	24
ARPA-e Benchmark	N/A	6	144

fadEZ

A5v %z

dvs ny

οī (=«^

f c[\ iK l

°p; ®NgE_w

R:g D

/ | ~ X I

Conclusions

- GO Competition depends on selecting appropriately difficult cases.
 - a priori hardness metrics are challenging, especially for cases with large potential improvement.
 - Safdarian et al. describes industry/synthetic difference in more detail.
- No evidence that penalties were a major influence in final scores/rankings.
- Flexible demand was necessary for solver performance.
- Shorter time limits led to more competition between solvers.
 - Bottom-ranked ensembles outperformed each individual team.
 - Best pairwise ensembles came from top individual team + mid-ranked teams.
- Few attempts at transmission switching.
 - Inclusive: problem too hard? network dependence? did cases reflect real-world?

iYc7^~ /]Tb nc-o.` H%mg+

:l} Z

b@ D? k;nihW # = G

A5v %z

dvs ny

τ. (= %^F

f o c[∖ iK l f ●

°p; ⊘NgEw

R:g D

/ | ~ X I

e e

Thank you

.

DVfm#76vCv>uu4?C1:M:T6ifl iV:mwGsl'\VG6

uf l

\$ Id wX P! .

-04* 1 6|f 1

U~ZIniBD K

P s \

