
Solving security-constrained ACOPF problems

Daniel Bienstock, Columbia University and Gurobi
Richard Waltz, Artelys

A formal textbook statement of standard ACOPF

Minimize cost of generation:
∑

g∈G Fg(P
g)

• Here, G is the set of generators

• P g is the (active) power generated at g

• Fg is generation cost at g – convex, piecewise-linear or quadratic
Example: Fg(P) = 3P 2 + 2P

Constraints:

• PF (power flow) constraints: choose voltages so that network delivers
power from generators to the loads

• Voltage magnitudes are constrained

• Power flow on any line km cannot be too large: |Skm| is within limits

• The output of any generator is limited

Minimize
∑

g∈G Fg(P
g)

with constraints:

Skm =
(Gkk − jBkk) |Vk|2 + (Gkm − jBkm) |Vk||Vm|(cos θkm + j sin θkm)

∑
km∈δ(k) Skm = (

∑
g∈G(k)P

g − P d
k) + j(

∑
g∈G(k)Q

g −Qd
k)

Power flow limit on line km:
|Skm|2 = Re(Skm)2 + Im(Skm)2 ≤ Ukm

Voltage limit on node k:
V min
k ≤ |Vk| ≤ V max

k

Generator output limit on node k:
Pmin
k ≤ P g

k ≤ Pmax
k

Phase angle limit on line km: (sometimes)
|θk − θm| ≤ θmax

k,m

GO competition: basic features

• Maximize surplus rather than minimize cost

– Piecewise-linear function measuring benefit of consumption (for each
load)

– Imbalance, line overload, transformer overload penalty functions (more
below)

• Switched shunt step selection

• Tap ratio, phase shift, impedance correction for transformers

• Topology optimization

• Generator commitment, start-up and shut-down decisions

• Security-constrained: total objective is sum of base case plus average
contingency case

• More

GO competition: configurable transformers and shunts

• Example: tap ratio and angle in a transformer can be adjusted

m

Vm
mk

Igy += j b

_1

2
y

sh _1

2
y

sh

I
km V

kk

V
k

N

1
k

N : 1

I
kmN*

0000

• Impedance correction factors modeled using a piecewise-linear curve

• Function can be quite nonlinear with local optima

• Switched shunts, in blocks (at buses)

• Altogether, a large number of integer variables

GO competition: contingencies

• We are given a (often, large) list of K contingencies

– “Line out” contingency – one power line fails

– “Gen out” contingency – one generator

• For each contingency k, a feasible solution V k, Gk, Lk, Zk must be
computed

• The system should be able to migrate from base solution to the contin-
gency solution

• Again, with restrictions: e.g. the difference between base Gb and con-
tingency Gk is constrained

• Total cost =

cost of base solution +
1

K

∑
cost of solution to contingency k

GO competition: handling equation mismatches

• ACOPF model abounds with nonlinear equations. Example:

∑
km∈δ(k) VkI

∗
km = (

∑
g∈G(k)P

g − P d
k) + j(

∑
g∈G(k)Q

g −Qd
k)

• Challenge! When presented with a nonlinear equation,

F (x) = 0,

a numerical solver will instead return x̂ with F (x̂) = ε
with |ε| small (usually)

• And then, what?
A little infeasibility can buy you a lot of optimality

• GO competition Add to the objective a term of the form L(|ε|) where
L is rapidly increasing convex (infeasibility penalization)

• This difficulty is of a fundamental nature!

GO competition: Prior Solution

• V prev, Gprev, Lprev, Zprev = existing solution
(voltage, generation, controllable loads, configuration)

• To compute: V b, Gb, Lb, Zb = new (base) solution

• Why a new solution? Because e.g. some of the fixed loads may change.
And the network may be slightly different.

• Restrictions: e.g., the difference between Gprev and Gb is constrained

| P g,prev − P g,b| ≤ upper bound dependent on g,

for each generator g.

→ The prior solution is more help than hindrance!

GO competition: data sets

• Combination of industry and realistic synthetic data sets

• Both large and with many contingencies

• Industry example C2T2N34363:
34,000 buses, 41,000 lines, 900 generators, 3000 contingencies
thousands of integer variables

• A single ACOPF run on such networks is nontrivial: Example C2FEN19402:

– 19,402 buses, 968 generators, 13,000 lines

– 267904 variables, 200890 constraints, 6692 contingencies

– KNITRO solves Base case in 51.05 seconds on 11 cores.

• Available time is limited: 5 minutes to one hour

The king of the hill – log barrier methods

Example: min{ g(v1, v2) : 1/2 ≤ v1 and v2 ≤ 1} where g is convex

becomes:

min g(v1, v2) − α log(v1 − 1/2) − α log(1− v2)

subject to: v1, v2 unconstrained

α > 0 a “barrier” parameter (small!)

x
1

x
2

1/2

1

constrained
optimum

The king of the hill – log barrier methods

Minimize f (x)

s.t. c(x) = 0
x ≥ 0

Instead, solve barrier problems:

Minimize f (x) − µ
∑n

j=1 ln(xj)

s.t. c(x) = 0

And let µ→ 0. Primal-dual equations:

∇f (x) − µ∇c(x) − z = 0

c(x) = 0

zjxj = µ all j

Solve this system, for each fixed µ, using Newton’s method

The king of the hill – log barrier methods

Today, two implementations dominate:

• KNITRO (Waltz, Nocedal, 2003): A “merit function” method.

• IPOPT (Wachter and Biegler, 2004): A “filter” method.

KNITRO and IPOPT followed a long line of work due to many authors!

1. Log barrier methods can (very closely) optimize very large ACOPF prob-
lems in minutes

2. Nothing else comes close. Relaxation methods only prove bounds – don’t
provide solutions

3. Relaxation methods: spatial branch-and-cut, semidefinite programming,
others.

The king of the hill – log barrier methods

Today, two implementations dominate:

• KNITRO (Waltz, Nocedal, 2003): A “merit function” method.

• IPOPT (Wachter and Biegler, 2004): A “filter” method.

KNITRO and IPOPT followed a long line of work due to many authors!

1. Log barrier methods can (very closely) optimize very large ACOPF prob-
lems in minutes

2. Nothing else comes close. Relaxation methods only prove bounds – don’t
provide solutions

3. New kid on the block: Gurobi. Integrated log-barrier, integer program-
ming and relaxations!

We were # 2 overall

Basic approach:

1. Dimensionality reduction

• Fact: real-world power systems are very robust

• Transition from previous solution, to base solution
should require minor adjustments

• Transition from base solution, to contingency solutions
should require minor adjustments

2. Progressive rounding
Common-sense iterative rounding of integer variables –
all integer variables modeled as sum of binaries

3. Numerical stability
Some numerical parameters in GO setup are too large.
Slack penalty function in particular. Replaced with simple linear penalty
plus bounds.

Dimensionality reduction

Example: transition from previous solution, to base solution

• Most changes in data from previous network, to new one, involve changes
in demands

• Most demand changes are very small

• What we did:

1. Select a subset S of buses with large enough demand changes

2. Restrict changes in prior solution to buses that are electrically close
enough to S

3. Apply our rounding heuristic to the correspondingly restricted ACOPF
problem

C2T3N06100 scenario 115
6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

• About 100,000 variables and constraints

• Picture shows buses where prior solution has infeasibility greater than le-3: about 200

obj=712281.64
total_bus_cost l.85847217e-02

total load benefit l.26257799e+06
- -

total_gen_cost 5.50296330e+0S

total_line_cost 0.00000000e+00

total_xfmr_cost 0.00000000e+00

(Knitro feaserror 2.481e-09)

169.05 sec 450 iterations

C2T3N06100 scenario 115
6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

Contingency 3 (line down)

• Base case obj: 712281.64

• Heuristic solution:

total bus cost 1.65362151e-02
- -

total load benefit 1.25961077e+06
- -

total_gen_cost 5.44767392e+05

total line cost 0.00000000e+00
- -

total xfmr cost 0.00000000e+00
- -

objective 714843.36

31.30 seconds 227 iterations

+ 6.8 seconds+ 27 iterations (rounding)

Algorithm outline

1. Find good solution to base case by migrating from prior solution

2. For each contingency, migrate from the base case solution

3. Migration = use the reduced dimensionality heuristic

4. Appropriately handle binary variables (more, below).

5. MPI implementation to four nodes (each node = 16 cores)

Binary variables

1. MINLP branch-and-bound code in Knitro was not used – problems too
large in GO2.

2. Those binary variables not fixed by dimensionality reduction are addressed
by progressively relaxing, rounding, and resolving.

3. Final solve with all integer variables fixed.

4. Knitro solves warm-started.

5. Occasionally this procedure fails – in that case our algorithm retreats,
unfixes some of the binary variables, and re-runs Knitro.

Basic Details

1. Implementation in Python. Why?

• Incorporate evaluation code into our code.

• We would have done it in C, but not enough time.

2. We used AMPL to interface with Knitro. Why?

• Good preprocessor.

• Efficient automatic differentiation.
The Achylles’ heel of log barrier methods:

compute Hessian of constraints.

3. Not enough time to do as much as we wanted.

• Last scoring event overlapped with start of bad semester.

• I introduced a low-level bug within a one-line command.

Datasets in Final Event: 22 networks

• Buses: 403 - 31,777

• Contingencies: 54 - 1800

